444 lines
7.9 KiB
C++
444 lines
7.9 KiB
C++
// Copyright (C) 2009-2011 National ICT Australia (NICTA)
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public
|
|
// License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
// -------------------------------------------------------------------
|
|
//
|
|
// Written by Conrad Sanderson - http://conradsanderson.id.au
|
|
|
|
|
|
//! \addtogroup running_stat
|
|
//! @{
|
|
|
|
|
|
|
|
template<typename eT>
|
|
inline
|
|
arma_counter<eT>::~arma_counter()
|
|
{
|
|
arma_extra_debug_sigprint_this(this);
|
|
}
|
|
|
|
|
|
|
|
template<typename eT>
|
|
inline
|
|
arma_counter<eT>::arma_counter()
|
|
: d_count( eT(0))
|
|
, i_count(uword(0))
|
|
{
|
|
arma_extra_debug_sigprint_this(this);
|
|
}
|
|
|
|
|
|
|
|
template<typename eT>
|
|
inline
|
|
const arma_counter<eT>&
|
|
arma_counter<eT>::operator++()
|
|
{
|
|
if(i_count < ARMA_MAX_UWORD)
|
|
{
|
|
i_count++;
|
|
}
|
|
else
|
|
{
|
|
d_count += eT(ARMA_MAX_UWORD);
|
|
i_count = 1;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
|
|
template<typename eT>
|
|
inline
|
|
void
|
|
arma_counter<eT>::operator++(int)
|
|
{
|
|
operator++();
|
|
}
|
|
|
|
|
|
|
|
template<typename eT>
|
|
inline
|
|
void
|
|
arma_counter<eT>::reset()
|
|
{
|
|
d_count = eT(0);
|
|
i_count = uword(0);
|
|
}
|
|
|
|
|
|
|
|
template<typename eT>
|
|
inline
|
|
eT
|
|
arma_counter<eT>::value() const
|
|
{
|
|
return d_count + eT(i_count);
|
|
}
|
|
|
|
|
|
|
|
template<typename eT>
|
|
inline
|
|
eT
|
|
arma_counter<eT>::value_plus_1() const
|
|
{
|
|
if(i_count < ARMA_MAX_UWORD)
|
|
{
|
|
return d_count + eT(i_count + 1);
|
|
}
|
|
else
|
|
{
|
|
return d_count + eT(ARMA_MAX_UWORD) + eT(1);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename eT>
|
|
inline
|
|
eT
|
|
arma_counter<eT>::value_minus_1() const
|
|
{
|
|
if(i_count > 0)
|
|
{
|
|
return d_count + eT(i_count - 1);
|
|
}
|
|
else
|
|
{
|
|
return d_count - eT(1);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
|
|
|
|
template<typename eT>
|
|
inline
|
|
running_stat<eT>::~running_stat()
|
|
{
|
|
arma_extra_debug_sigprint_this(this);
|
|
}
|
|
|
|
|
|
|
|
template<typename eT>
|
|
inline
|
|
running_stat<eT>::running_stat()
|
|
: r_mean ( eT(0))
|
|
, r_var (typename running_stat<eT>::T(0))
|
|
, min_val ( eT(0))
|
|
, max_val ( eT(0))
|
|
, min_val_norm(typename running_stat<eT>::T(0))
|
|
, max_val_norm(typename running_stat<eT>::T(0))
|
|
{
|
|
arma_extra_debug_sigprint_this(this);
|
|
}
|
|
|
|
|
|
|
|
//! update statistics to reflect new sample
|
|
template<typename eT>
|
|
inline
|
|
void
|
|
running_stat<eT>::operator() (const typename running_stat<eT>::T sample)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
if( arma_isfinite(sample) == false )
|
|
{
|
|
arma_debug_warn("running_stat: sample ignored as it is non-finite" );
|
|
return;
|
|
}
|
|
|
|
running_stat_aux::update_stats(*this, sample);
|
|
}
|
|
|
|
|
|
|
|
//! update statistics to reflect new sample (version for complex numbers)
|
|
template<typename eT>
|
|
inline
|
|
void
|
|
running_stat<eT>::operator() (const std::complex< typename running_stat<eT>::T >& sample)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
if( arma_isfinite(sample) == false )
|
|
{
|
|
arma_debug_warn("running_stat: sample ignored as it is non-finite" );
|
|
return;
|
|
}
|
|
|
|
running_stat_aux::update_stats(*this, sample);
|
|
}
|
|
|
|
|
|
|
|
//! set all statistics to zero
|
|
template<typename eT>
|
|
inline
|
|
void
|
|
running_stat<eT>::reset()
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
// typedef typename running_stat<eT>::T T;
|
|
|
|
counter.reset();
|
|
|
|
r_mean = eT(0);
|
|
r_var = T(0);
|
|
|
|
min_val = eT(0);
|
|
max_val = eT(0);
|
|
|
|
min_val_norm = T(0);
|
|
max_val_norm = T(0);
|
|
}
|
|
|
|
|
|
|
|
//! mean or average value
|
|
template<typename eT>
|
|
inline
|
|
eT
|
|
running_stat<eT>::mean() const
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
return r_mean;
|
|
}
|
|
|
|
|
|
|
|
//! variance
|
|
template<typename eT>
|
|
inline
|
|
typename running_stat<eT>::T
|
|
running_stat<eT>::var(const uword norm_type) const
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
const T N = counter.value();
|
|
|
|
if(N > T(1))
|
|
{
|
|
if(norm_type == 0)
|
|
{
|
|
return r_var;
|
|
}
|
|
else
|
|
{
|
|
const T N_minus_1 = counter.value_minus_1();
|
|
return (N_minus_1/N) * r_var;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return T(0);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//! standard deviation
|
|
template<typename eT>
|
|
inline
|
|
typename running_stat<eT>::T
|
|
running_stat<eT>::stddev(const uword norm_type) const
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
return std::sqrt( (*this).var(norm_type) );
|
|
}
|
|
|
|
|
|
|
|
//! minimum value
|
|
template<typename eT>
|
|
inline
|
|
eT
|
|
running_stat<eT>::min() const
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
return min_val;
|
|
}
|
|
|
|
|
|
|
|
//! maximum value
|
|
template<typename eT>
|
|
inline
|
|
eT
|
|
running_stat<eT>::max() const
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
return max_val;
|
|
}
|
|
|
|
|
|
|
|
//! number of samples so far
|
|
template<typename eT>
|
|
inline
|
|
typename get_pod_type<eT>::result
|
|
running_stat<eT>::count() const
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
return counter.value();
|
|
}
|
|
|
|
|
|
|
|
//! update statistics to reflect new sample (version for non-complex numbers, non-complex sample)
|
|
template<typename eT>
|
|
inline
|
|
void
|
|
running_stat_aux::update_stats(running_stat<eT>& x, const eT sample, const typename arma_not_cx<eT>::result* junk)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
arma_ignore(junk);
|
|
|
|
typedef typename running_stat<eT>::T T;
|
|
|
|
const T N = x.counter.value();
|
|
|
|
if(N > T(0))
|
|
{
|
|
if(sample < x.min_val)
|
|
{
|
|
x.min_val = sample;
|
|
}
|
|
|
|
if(sample > x.max_val)
|
|
{
|
|
x.max_val = sample;
|
|
}
|
|
|
|
const T N_plus_1 = x.counter.value_plus_1();
|
|
const T N_minus_1 = x.counter.value_minus_1();
|
|
|
|
// note: variance has to be updated before the mean
|
|
|
|
const eT tmp = sample - x.r_mean;
|
|
|
|
x.r_var = N_minus_1/N * x.r_var + (tmp*tmp)/N_plus_1;
|
|
|
|
x.r_mean = x.r_mean + (sample - x.r_mean)/N_plus_1;
|
|
//x.r_mean = (N/N_plus_1)*x.r_mean + sample/N_plus_1;
|
|
//x.r_mean = (x.r_mean + sample/N) * N/N_plus_1;
|
|
}
|
|
else
|
|
{
|
|
x.r_mean = sample;
|
|
x.min_val = sample;
|
|
x.max_val = sample;
|
|
|
|
// r_var is initialised to zero
|
|
// in the constructor and reset()
|
|
}
|
|
|
|
x.counter++;
|
|
}
|
|
|
|
|
|
|
|
//! update statistics to reflect new sample (version for non-complex numbers, complex sample)
|
|
template<typename eT>
|
|
inline
|
|
void
|
|
running_stat_aux::update_stats(running_stat<eT>& x, const std::complex<eT>& sample, const typename arma_not_cx<eT>::result* junk)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
arma_ignore(junk);
|
|
|
|
running_stat_aux::update_stats(x, std::real(sample));
|
|
}
|
|
|
|
|
|
|
|
//! update statistics to reflect new sample (version for complex numbers, non-complex sample)
|
|
template<typename eT>
|
|
inline
|
|
void
|
|
running_stat_aux::update_stats(running_stat<eT>& x, const typename eT::value_type sample, const typename arma_cx_only<eT>::result* junk)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
arma_ignore(junk);
|
|
|
|
typedef typename eT::value_type T;
|
|
|
|
running_stat_aux::update_stats(x, std::complex<T>(sample));
|
|
}
|
|
|
|
|
|
|
|
//! alter statistics to reflect new sample (version for complex numbers, complex sample)
|
|
template<typename eT>
|
|
inline
|
|
void
|
|
running_stat_aux::update_stats(running_stat<eT>& x, const eT& sample, const typename arma_cx_only<eT>::result* junk)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
arma_ignore(junk);
|
|
|
|
typedef typename eT::value_type T;
|
|
|
|
const T sample_norm = std::norm(sample);
|
|
const T N = x.counter.value();
|
|
|
|
if(N > T(0))
|
|
{
|
|
if(sample_norm < x.min_val_norm)
|
|
{
|
|
x.min_val_norm = sample_norm;
|
|
x.min_val = sample;
|
|
}
|
|
|
|
if(sample_norm > x.max_val_norm)
|
|
{
|
|
x.max_val_norm = sample_norm;
|
|
x.max_val = sample;
|
|
}
|
|
|
|
const T N_plus_1 = x.counter.value_plus_1();
|
|
const T N_minus_1 = x.counter.value_minus_1();
|
|
|
|
x.r_var = N_minus_1/N * x.r_var + std::norm(sample - x.r_mean)/N_plus_1;
|
|
|
|
x.r_mean = x.r_mean + (sample - x.r_mean)/N_plus_1;
|
|
//x.r_mean = (N/N_plus_1)*x.r_mean + sample/N_plus_1;
|
|
//x.r_mean = (x.r_mean + sample/N) * N/N_plus_1;
|
|
}
|
|
else
|
|
{
|
|
x.r_mean = sample;
|
|
x.min_val = sample;
|
|
x.max_val = sample;
|
|
x.min_val_norm = sample_norm;
|
|
x.max_val_norm = sample_norm;
|
|
|
|
// r_var is initialised to zero
|
|
// in the constructor and reset()
|
|
}
|
|
|
|
x.counter++;
|
|
}
|
|
|
|
|
|
|
|
//! @}
|