AnalysisSystemForRadionucli.../include/armadillo_bits/operator_times.hpp
2024-06-04 15:25:02 +08:00

550 lines
12 KiB
C++

// Copyright (C) 2008-2015 National ICT Australia (NICTA)
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
// -------------------------------------------------------------------
//
// Written by Conrad Sanderson - http://conradsanderson.id.au
// Written by Ryan Curtin
//! \addtogroup operator_times
//! @{
//! Base * scalar
template<typename T1>
arma_inline
typename enable_if2< is_arma_type<T1>::value, const eOp<T1, eop_scalar_times> >::result
operator*
(const T1& X, const typename T1::elem_type k)
{
arma_extra_debug_sigprint();
return eOp<T1, eop_scalar_times>(X,k);
}
//! scalar * Base
template<typename T1>
arma_inline
typename enable_if2< is_arma_type<T1>::value, const eOp<T1, eop_scalar_times> >::result
operator*
(const typename T1::elem_type k, const T1& X)
{
arma_extra_debug_sigprint();
return eOp<T1, eop_scalar_times>(X,k); // NOTE: order is swapped
}
//! non-complex Base * complex scalar
template<typename T1>
arma_inline
typename
enable_if2
<
(is_arma_type<T1>::value && is_cx<typename T1::elem_type>::no),
const mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_times>
>::result
operator*
(
const T1& X,
const std::complex<typename T1::pod_type>& k
)
{
arma_extra_debug_sigprint();
return mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_times>('j', X, k);
}
//! complex scalar * non-complex Base
template<typename T1>
arma_inline
typename
enable_if2
<
(is_arma_type<T1>::value && is_cx<typename T1::elem_type>::no),
const mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_times>
>::result
operator*
(
const std::complex<typename T1::pod_type>& k,
const T1& X
)
{
arma_extra_debug_sigprint();
return mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_times>('j', X, k);
}
//! scalar * trans(T1)
template<typename T1>
arma_inline
const Op<T1, op_htrans2>
operator*
(const typename T1::elem_type k, const Op<T1, op_htrans>& X)
{
arma_extra_debug_sigprint();
return Op<T1, op_htrans2>(X.m, k);
}
//! trans(T1) * scalar
template<typename T1>
arma_inline
const Op<T1, op_htrans2>
operator*
(const Op<T1, op_htrans>& X, const typename T1::elem_type k)
{
arma_extra_debug_sigprint();
return Op<T1, op_htrans2>(X.m, k);
}
//! Base * diagmat
template<typename T1, typename T2>
arma_inline
typename
enable_if2
<
(is_arma_type<T1>::value && is_same_type<typename T1::elem_type, typename T2::elem_type>::value),
const Glue<T1, Op<T2, op_diagmat>, glue_times_diag>
>::result
operator*
(const T1& X, const Op<T2, op_diagmat>& Y)
{
arma_extra_debug_sigprint();
return Glue<T1, Op<T2, op_diagmat>, glue_times_diag>(X, Y);
}
//! diagmat * Base
template<typename T1, typename T2>
arma_inline
typename
enable_if2
<
(is_arma_type<T2>::value && is_same_type<typename T1::elem_type, typename T2::elem_type>::value),
const Glue<Op<T1, op_diagmat>, T2, glue_times_diag>
>::result
operator*
(const Op<T1, op_diagmat>& X, const T2& Y)
{
arma_extra_debug_sigprint();
return Glue<Op<T1, op_diagmat>, T2, glue_times_diag>(X, Y);
}
//! diagmat * diagmat
template<typename T1, typename T2>
inline
Mat< typename promote_type<typename T1::elem_type, typename T2::elem_type>::result >
operator*
(const Op<T1, op_diagmat>& X, const Op<T2, op_diagmat>& Y)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT1;
typedef typename T2::elem_type eT2;
typedef typename promote_type<eT1,eT2>::result out_eT;
promote_type<eT1,eT2>::check();
const diagmat_proxy<T1> A(X.m);
const diagmat_proxy<T2> B(Y.m);
arma_debug_assert_mul_size(A.n_rows, A.n_cols, B.n_rows, B.n_cols, "matrix multiplication");
Mat<out_eT> out(A.n_rows, B.n_cols, fill::zeros);
const uword A_length = (std::min)(A.n_rows, A.n_cols);
const uword B_length = (std::min)(B.n_rows, B.n_cols);
const uword N = (std::min)(A_length, B_length);
for(uword i=0; i<N; ++i)
{
out.at(i,i) = upgrade_val<eT1,eT2>::apply( A[i] ) * upgrade_val<eT1,eT2>::apply( B[i] );
}
return out;
}
//! multiplication of Base objects with same element type
template<typename T1, typename T2>
arma_inline
typename
enable_if2
<
is_arma_type<T1>::value && is_arma_type<T2>::value && is_same_type<typename T1::elem_type, typename T2::elem_type>::value,
const Glue<T1, T2, glue_times>
>::result
operator*
(const T1& X, const T2& Y)
{
arma_extra_debug_sigprint();
return Glue<T1, T2, glue_times>(X, Y);
}
//! multiplication of Base objects with different element types
template<typename T1, typename T2>
inline
typename
enable_if2
<
(is_arma_type<T1>::value && is_arma_type<T2>::value && (is_same_type<typename T1::elem_type, typename T2::elem_type>::no)),
const mtGlue< typename promote_type<typename T1::elem_type, typename T2::elem_type>::result, T1, T2, glue_mixed_times >
>::result
operator*
(
const T1& X,
const T2& Y
)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT1;
typedef typename T2::elem_type eT2;
typedef typename promote_type<eT1,eT2>::result out_eT;
promote_type<eT1,eT2>::check();
return mtGlue<out_eT, T1, T2, glue_mixed_times>( X, Y );
}
//! sparse multiplied by scalar
template<typename T1>
inline
typename
enable_if2
<
is_arma_sparse_type<T1>::value,
SpOp<T1,spop_scalar_times>
>::result
operator*
(
const T1& X,
const typename T1::elem_type k
)
{
arma_extra_debug_sigprint();
return SpOp<T1,spop_scalar_times>(X, k);
}
template<typename T1>
inline
typename
enable_if2
<
is_arma_sparse_type<T1>::value,
SpOp<T1,spop_scalar_times>
>::result
operator*
(
const typename T1::elem_type k,
const T1& X
)
{
arma_extra_debug_sigprint();
return SpOp<T1,spop_scalar_times>(X, k);
}
//! multiplication of two sparse objects
template<typename T1, typename T2>
inline
arma_hot
typename
enable_if2
<
(is_arma_sparse_type<T1>::value && is_arma_sparse_type<T2>::value && is_same_type<typename T1::elem_type, typename T2::elem_type>::value),
const SpGlue<T1,T2,spglue_times>
>::result
operator*
(
const T1& x,
const T2& y
)
{
arma_extra_debug_sigprint();
return SpGlue<T1,T2,spglue_times>(x, y);
}
//! convert "(sparse + sparse) * scalar" to specialised operation "scalar * (sparse + sparse)"
template<typename T1, typename T2>
inline
const SpGlue<T1,T2,spglue_plus2>
operator*
(
const SpGlue<T1,T2,spglue_plus>& X,
const typename T1::elem_type k
)
{
arma_extra_debug_sigprint();
return SpGlue<T1,T2,spglue_plus2>(X.A, X.B, k);
}
//! convert "scalar * (sparse + sparse)" to specialised operation
template<typename T1, typename T2>
inline
const SpGlue<T1,T2,spglue_plus2>
operator*
(
const typename T1::elem_type k,
const SpGlue<T1,T2,spglue_plus>& X
)
{
arma_extra_debug_sigprint();
return SpGlue<T1,T2,spglue_plus2>(X.A, X.B, k);
}
//! convert "(sparse - sparse) * scalar" to specialised operation "scalar * (sparse - sparse)"
template<typename T1, typename T2>
inline
const SpGlue<T1,T2,spglue_minus2>
operator*
(
const SpGlue<T1,T2,spglue_minus>& X,
const typename T1::elem_type k
)
{
arma_extra_debug_sigprint();
return SpGlue<T1,T2,spglue_minus2>(X.A, X.B, k);
}
//! convert "scalar * (sparse - sparse)" to specialised operation
template<typename T1, typename T2>
inline
const SpGlue<T1,T2,spglue_minus2>
operator*
(
const typename T1::elem_type k,
const SpGlue<T1,T2,spglue_minus>& X
)
{
arma_extra_debug_sigprint();
return SpGlue<T1,T2,spglue_minus2>(X.A, X.B, k);
}
//! convert "(sparse*sparse) * scalar" to specialised operation "scalar * (sparse*sparse)"
template<typename T1, typename T2>
inline
const SpGlue<T1,T2,spglue_times2>
operator*
(
const SpGlue<T1,T2,spglue_times>& X,
const typename T1::elem_type k
)
{
arma_extra_debug_sigprint();
return SpGlue<T1,T2,spglue_times2>(X.A, X.B, k);
}
//! convert "scalar * (sparse*sparse)" to specialised operation
template<typename T1, typename T2>
inline
const SpGlue<T1,T2,spglue_times2>
operator*
(
const typename T1::elem_type k,
const SpGlue<T1,T2,spglue_times>& X
)
{
arma_extra_debug_sigprint();
return SpGlue<T1,T2,spglue_times2>(X.A, X.B, k);
}
//! convert "(scalar*sparse) * sparse" to specialised operation "scalar * (sparse*sparse)"
template<typename T1, typename T2>
inline
typename
enable_if2
<
is_arma_sparse_type<T2>::value,
const SpGlue<T1,T2,spglue_times2>
>::result
operator*
(
const SpOp<T1,spop_scalar_times>& X,
const T2& Y
)
{
arma_extra_debug_sigprint();
return SpGlue<T1,T2,spglue_times2>(X.m, Y, X.aux);
}
//! convert "sparse * (scalar*sparse)" to specialised operation "scalar * (sparse*sparse)"
template<typename T1, typename T2>
inline
typename
enable_if2
<
is_arma_sparse_type<T1>::value,
const SpGlue<T1,T2,spglue_times2>
>::result
operator*
(
const T1& X,
const SpOp<T2,spop_scalar_times>& Y
)
{
arma_extra_debug_sigprint();
return SpGlue<T1,T2,spglue_times2>(X, Y.m, Y.aux);
}
//! multiplication of one sparse and one dense object
template<typename T1, typename T2>
inline
typename
enable_if2
<
(is_arma_sparse_type<T1>::value && is_arma_type<T2>::value && is_same_type<typename T1::elem_type, typename T2::elem_type>::value),
Mat<typename T1::elem_type>
>::result
operator*
(
const T1& x,
const T2& y
)
{
arma_extra_debug_sigprint();
const SpProxy<T1> pa(x);
const Proxy<T2> pb(y);
arma_debug_assert_mul_size(pa.get_n_rows(), pa.get_n_cols(), pb.get_n_rows(), pb.get_n_cols(), "matrix multiplication");
Mat<typename T1::elem_type> result(pa.get_n_rows(), pb.get_n_cols());
result.zeros();
if( (pa.get_n_nonzero() > 0) && (pb.get_n_elem() > 0) )
{
typename SpProxy<T1>::const_iterator_type x_it = pa.begin();
typename SpProxy<T1>::const_iterator_type x_it_end = pa.end();
const uword result_n_cols = result.n_cols;
while(x_it != x_it_end)
{
for(uword col = 0; col < result_n_cols; ++col)
{
result.at(x_it.row(), col) += (*x_it) * pb.at(x_it.col(), col);
}
++x_it;
}
}
return result;
}
//! multiplication of one dense and one sparse object
template<typename T1, typename T2>
inline
typename
enable_if2
<
(is_arma_type<T1>::value && is_arma_sparse_type<T2>::value && is_same_type<typename T1::elem_type, typename T2::elem_type>::value),
Mat<typename T1::elem_type>
>::result
operator*
(
const T1& x,
const T2& y
)
{
arma_extra_debug_sigprint();
const Proxy<T1> pa(x);
const SpProxy<T2> pb(y);
arma_debug_assert_mul_size(pa.get_n_rows(), pa.get_n_cols(), pb.get_n_rows(), pb.get_n_cols(), "matrix multiplication");
Mat<typename T1::elem_type> result(pa.get_n_rows(), pb.get_n_cols());
result.zeros();
if( (pa.get_n_elem() > 0) && (pb.get_n_nonzero() > 0) )
{
typename SpProxy<T2>::const_iterator_type y_col_it = pb.begin();
typename SpProxy<T2>::const_iterator_type y_col_it_end = pb.end();
const uword result_n_rows = result.n_rows;
while(y_col_it != y_col_it_end)
{
for(uword row = 0; row < result_n_rows; ++row)
{
result.at(row, y_col_it.col()) += pa.at(row, y_col_it.row()) * (*y_col_it);
}
++y_col_it;
}
}
return result;
}
//! @}