85 lines
2.2 KiB
C++
85 lines
2.2 KiB
C++
// Copyright (C) 2009-2015 National ICT Australia (NICTA)
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public
|
|
// License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
// -------------------------------------------------------------------
|
|
//
|
|
// Written by Conrad Sanderson - http://conradsanderson.id.au
|
|
|
|
|
|
//! \addtogroup op_stddev
|
|
//! @{
|
|
|
|
|
|
//! \brief
|
|
//! For each row or for each column, find the standard deviation.
|
|
//! The result is stored in a dense matrix that has either one column or one row.
|
|
//! The dimension for which the standard deviations are found is set via the stddev() function.
|
|
template<typename T1>
|
|
inline
|
|
void
|
|
op_stddev::apply(Mat<typename T1::pod_type>& out, const mtOp<typename T1::pod_type, T1, op_stddev>& in)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
typedef typename T1::elem_type in_eT;
|
|
typedef typename T1::pod_type out_eT;
|
|
|
|
const unwrap_check_mixed<T1> tmp(in.m, out);
|
|
const Mat<in_eT>& X = tmp.M;
|
|
|
|
const uword norm_type = in.aux_uword_a;
|
|
const uword dim = in.aux_uword_b;
|
|
|
|
arma_debug_check( (norm_type > 1), "stddev(): parameter 'norm_type' must be 0 or 1" );
|
|
arma_debug_check( (dim > 1), "stddev(): parameter 'dim' must be 0 or 1" );
|
|
|
|
const uword X_n_rows = X.n_rows;
|
|
const uword X_n_cols = X.n_cols;
|
|
|
|
if(dim == 0)
|
|
{
|
|
arma_extra_debug_print("op_stddev::apply(): dim = 0");
|
|
|
|
out.set_size((X_n_rows > 0) ? 1 : 0, X_n_cols);
|
|
|
|
if(X_n_rows > 0)
|
|
{
|
|
out_eT* out_mem = out.memptr();
|
|
|
|
for(uword col=0; col<X_n_cols; ++col)
|
|
{
|
|
out_mem[col] = std::sqrt( op_var::direct_var( X.colptr(col), X_n_rows, norm_type ) );
|
|
}
|
|
}
|
|
}
|
|
else
|
|
if(dim == 1)
|
|
{
|
|
arma_extra_debug_print("op_stddev::apply(): dim = 1");
|
|
|
|
out.set_size(X_n_rows, (X_n_cols > 0) ? 1 : 0);
|
|
|
|
if(X_n_cols > 0)
|
|
{
|
|
podarray<in_eT> dat(X_n_cols);
|
|
|
|
in_eT* dat_mem = dat.memptr();
|
|
out_eT* out_mem = out.memptr();
|
|
|
|
for(uword row=0; row<X_n_rows; ++row)
|
|
{
|
|
dat.copy_row(X, row);
|
|
|
|
out_mem[row] = std::sqrt( op_var::direct_var( dat_mem, X_n_cols, norm_type) );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//! @}
|
|
|