613 lines
15 KiB
C++
613 lines
15 KiB
C++
// Copyright (C) 2010-2013 National ICT Australia (NICTA)
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public
|
|
// License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
// -------------------------------------------------------------------
|
|
//
|
|
// Written by Conrad Sanderson - http://conradsanderson.id.au
|
|
// Written by Dimitrios Bouzas
|
|
// Written by Stanislav Funiak
|
|
|
|
|
|
//! \addtogroup op_princomp
|
|
//! @{
|
|
|
|
|
|
|
|
//! \brief
|
|
//! principal component analysis -- 4 arguments version
|
|
//! computation is done via singular value decomposition
|
|
//! coeff_out -> principal component coefficients
|
|
//! score_out -> projected samples
|
|
//! latent_out -> eigenvalues of principal vectors
|
|
//! tsquared_out -> Hotelling's T^2 statistic
|
|
template<typename T1>
|
|
inline
|
|
bool
|
|
op_princomp::direct_princomp
|
|
(
|
|
Mat<typename T1::elem_type>& coeff_out,
|
|
Mat<typename T1::elem_type>& score_out,
|
|
Col<typename T1::elem_type>& latent_out,
|
|
Col<typename T1::elem_type>& tsquared_out,
|
|
const Base<typename T1::elem_type, T1>& X,
|
|
const typename arma_not_cx<typename T1::elem_type>::result* junk
|
|
)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
arma_ignore(junk);
|
|
|
|
typedef typename T1::elem_type eT;
|
|
|
|
const unwrap_check<T1> Y( X.get_ref(), score_out );
|
|
const Mat<eT>& in = Y.M;
|
|
|
|
const uword n_rows = in.n_rows;
|
|
const uword n_cols = in.n_cols;
|
|
|
|
if(n_rows > 1) // more than one sample
|
|
{
|
|
// subtract the mean - use score_out as temporary matrix
|
|
score_out = in; score_out.each_row() -= mean(in);
|
|
|
|
// singular value decomposition
|
|
Mat<eT> U;
|
|
Col<eT> s;
|
|
|
|
const bool svd_ok = svd(U, s, coeff_out, score_out);
|
|
|
|
if(svd_ok == false) { return false; }
|
|
|
|
// normalize the eigenvalues
|
|
s /= std::sqrt( double(n_rows - 1) );
|
|
|
|
// project the samples to the principals
|
|
score_out *= coeff_out;
|
|
|
|
if(n_rows <= n_cols) // number of samples is less than their dimensionality
|
|
{
|
|
score_out.cols(n_rows-1,n_cols-1).zeros();
|
|
|
|
//Col<eT> s_tmp = zeros< Col<eT> >(n_cols);
|
|
Col<eT> s_tmp(n_cols);
|
|
s_tmp.zeros();
|
|
|
|
s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2);
|
|
s = s_tmp;
|
|
|
|
// compute the Hotelling's T-squared
|
|
s_tmp.rows(0,n_rows-2) = eT(1) / s_tmp.rows(0,n_rows-2);
|
|
|
|
const Mat<eT> S = score_out * diagmat(Col<eT>(s_tmp));
|
|
tsquared_out = sum(S%S,1);
|
|
}
|
|
else
|
|
{
|
|
// compute the Hotelling's T-squared
|
|
const Mat<eT> S = score_out * diagmat(Col<eT>( eT(1) / s));
|
|
tsquared_out = sum(S%S,1);
|
|
}
|
|
|
|
// compute the eigenvalues of the principal vectors
|
|
latent_out = s%s;
|
|
}
|
|
else // 0 or 1 samples
|
|
{
|
|
coeff_out.eye(n_cols, n_cols);
|
|
|
|
score_out.copy_size(in);
|
|
score_out.zeros();
|
|
|
|
latent_out.set_size(n_cols);
|
|
latent_out.zeros();
|
|
|
|
tsquared_out.set_size(n_rows);
|
|
tsquared_out.zeros();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
//! \brief
|
|
//! principal component analysis -- 3 arguments version
|
|
//! computation is done via singular value decomposition
|
|
//! coeff_out -> principal component coefficients
|
|
//! score_out -> projected samples
|
|
//! latent_out -> eigenvalues of principal vectors
|
|
template<typename T1>
|
|
inline
|
|
bool
|
|
op_princomp::direct_princomp
|
|
(
|
|
Mat<typename T1::elem_type>& coeff_out,
|
|
Mat<typename T1::elem_type>& score_out,
|
|
Col<typename T1::elem_type>& latent_out,
|
|
const Base<typename T1::elem_type, T1>& X,
|
|
const typename arma_not_cx<typename T1::elem_type>::result* junk
|
|
)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
arma_ignore(junk);
|
|
|
|
typedef typename T1::elem_type eT;
|
|
|
|
const unwrap_check<T1> Y( X.get_ref(), score_out );
|
|
const Mat<eT>& in = Y.M;
|
|
|
|
const uword n_rows = in.n_rows;
|
|
const uword n_cols = in.n_cols;
|
|
|
|
if(n_rows > 1) // more than one sample
|
|
{
|
|
// subtract the mean - use score_out as temporary matrix
|
|
score_out = in; score_out.each_row() -= mean(in);
|
|
|
|
// singular value decomposition
|
|
Mat<eT> U;
|
|
Col<eT> s;
|
|
|
|
const bool svd_ok = svd(U, s, coeff_out, score_out);
|
|
|
|
if(svd_ok == false) { return false; }
|
|
|
|
// normalize the eigenvalues
|
|
s /= std::sqrt( double(n_rows - 1) );
|
|
|
|
// project the samples to the principals
|
|
score_out *= coeff_out;
|
|
|
|
if(n_rows <= n_cols) // number of samples is less than their dimensionality
|
|
{
|
|
score_out.cols(n_rows-1,n_cols-1).zeros();
|
|
|
|
Col<eT> s_tmp = zeros< Col<eT> >(n_cols);
|
|
s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2);
|
|
s = s_tmp;
|
|
}
|
|
|
|
// compute the eigenvalues of the principal vectors
|
|
latent_out = s%s;
|
|
|
|
}
|
|
else // 0 or 1 samples
|
|
{
|
|
coeff_out.eye(n_cols, n_cols);
|
|
|
|
score_out.copy_size(in);
|
|
score_out.zeros();
|
|
|
|
latent_out.set_size(n_cols);
|
|
latent_out.zeros();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
//! \brief
|
|
//! principal component analysis -- 2 arguments version
|
|
//! computation is done via singular value decomposition
|
|
//! coeff_out -> principal component coefficients
|
|
//! score_out -> projected samples
|
|
template<typename T1>
|
|
inline
|
|
bool
|
|
op_princomp::direct_princomp
|
|
(
|
|
Mat<typename T1::elem_type>& coeff_out,
|
|
Mat<typename T1::elem_type>& score_out,
|
|
const Base<typename T1::elem_type, T1>& X,
|
|
const typename arma_not_cx<typename T1::elem_type>::result* junk
|
|
)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
arma_ignore(junk);
|
|
|
|
typedef typename T1::elem_type eT;
|
|
|
|
const unwrap_check<T1> Y( X.get_ref(), score_out );
|
|
const Mat<eT>& in = Y.M;
|
|
|
|
const uword n_rows = in.n_rows;
|
|
const uword n_cols = in.n_cols;
|
|
|
|
if(n_rows > 1) // more than one sample
|
|
{
|
|
// subtract the mean - use score_out as temporary matrix
|
|
score_out = in; score_out.each_row() -= mean(in);
|
|
|
|
// singular value decomposition
|
|
Mat<eT> U;
|
|
Col<eT> s;
|
|
|
|
const bool svd_ok = svd(U, s, coeff_out, score_out);
|
|
|
|
if(svd_ok == false) { return false; }
|
|
|
|
// normalize the eigenvalues
|
|
s /= std::sqrt( double(n_rows - 1) );
|
|
|
|
// project the samples to the principals
|
|
score_out *= coeff_out;
|
|
|
|
if(n_rows <= n_cols) // number of samples is less than their dimensionality
|
|
{
|
|
score_out.cols(n_rows-1,n_cols-1).zeros();
|
|
|
|
Col<eT> s_tmp = zeros< Col<eT> >(n_cols);
|
|
s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2);
|
|
s = s_tmp;
|
|
}
|
|
}
|
|
else // 0 or 1 samples
|
|
{
|
|
coeff_out.eye(n_cols, n_cols);
|
|
score_out.copy_size(in);
|
|
score_out.zeros();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
//! \brief
|
|
//! principal component analysis -- 1 argument version
|
|
//! computation is done via singular value decomposition
|
|
//! coeff_out -> principal component coefficients
|
|
template<typename T1>
|
|
inline
|
|
bool
|
|
op_princomp::direct_princomp
|
|
(
|
|
Mat<typename T1::elem_type>& coeff_out,
|
|
const Base<typename T1::elem_type, T1>& X,
|
|
const typename arma_not_cx<typename T1::elem_type>::result* junk
|
|
)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
arma_ignore(junk);
|
|
|
|
typedef typename T1::elem_type eT;
|
|
|
|
const unwrap<T1> Y( X.get_ref() );
|
|
const Mat<eT>& in = Y.M;
|
|
|
|
if(in.n_elem != 0)
|
|
{
|
|
Mat<eT> tmp = in; tmp.each_row() -= mean(in);
|
|
|
|
// singular value decomposition
|
|
Mat<eT> U;
|
|
Col<eT> s;
|
|
|
|
const bool svd_ok = svd(U, s, coeff_out, tmp);
|
|
|
|
if(svd_ok == false) { return false; }
|
|
}
|
|
else
|
|
{
|
|
coeff_out.eye(in.n_cols, in.n_cols);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
//! \brief
|
|
//! principal component analysis -- 4 arguments complex version
|
|
//! computation is done via singular value decomposition
|
|
//! coeff_out -> principal component coefficients
|
|
//! score_out -> projected samples
|
|
//! latent_out -> eigenvalues of principal vectors
|
|
//! tsquared_out -> Hotelling's T^2 statistic
|
|
template<typename T1>
|
|
inline
|
|
bool
|
|
op_princomp::direct_princomp
|
|
(
|
|
Mat< std::complex<typename T1::pod_type> >& coeff_out,
|
|
Mat< std::complex<typename T1::pod_type> >& score_out,
|
|
Col< typename T1::pod_type >& latent_out,
|
|
Col< std::complex<typename T1::pod_type> >& tsquared_out,
|
|
const Base< std::complex<typename T1::pod_type>, T1 >& X,
|
|
const typename arma_cx_only<typename T1::elem_type>::result* junk
|
|
)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
arma_ignore(junk);
|
|
|
|
typedef typename T1::pod_type T;
|
|
typedef std::complex<T> eT;
|
|
|
|
const unwrap_check<T1> Y( X.get_ref(), score_out );
|
|
const Mat<eT>& in = Y.M;
|
|
|
|
const uword n_rows = in.n_rows;
|
|
const uword n_cols = in.n_cols;
|
|
|
|
if(n_rows > 1) // more than one sample
|
|
{
|
|
// subtract the mean - use score_out as temporary matrix
|
|
score_out = in; score_out.each_row() -= mean(in);
|
|
|
|
// singular value decomposition
|
|
Mat<eT> U;
|
|
Col< T> s;
|
|
|
|
const bool svd_ok = svd(U, s, coeff_out, score_out);
|
|
|
|
if(svd_ok == false) { return false; }
|
|
|
|
// normalize the eigenvalues
|
|
s /= std::sqrt( double(n_rows - 1) );
|
|
|
|
// project the samples to the principals
|
|
score_out *= coeff_out;
|
|
|
|
if(n_rows <= n_cols) // number of samples is less than their dimensionality
|
|
{
|
|
score_out.cols(n_rows-1,n_cols-1).zeros();
|
|
|
|
Col<T> s_tmp = zeros< Col<T> >(n_cols);
|
|
s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2);
|
|
s = s_tmp;
|
|
|
|
// compute the Hotelling's T-squared
|
|
s_tmp.rows(0,n_rows-2) = 1.0 / s_tmp.rows(0,n_rows-2);
|
|
const Mat<eT> S = score_out * diagmat(Col<T>(s_tmp));
|
|
tsquared_out = sum(S%S,1);
|
|
}
|
|
else
|
|
{
|
|
// compute the Hotelling's T-squared
|
|
const Mat<eT> S = score_out * diagmat(Col<T>(T(1) / s));
|
|
tsquared_out = sum(S%S,1);
|
|
}
|
|
|
|
// compute the eigenvalues of the principal vectors
|
|
latent_out = s%s;
|
|
|
|
}
|
|
else // 0 or 1 samples
|
|
{
|
|
coeff_out.eye(n_cols, n_cols);
|
|
|
|
score_out.copy_size(in);
|
|
score_out.zeros();
|
|
|
|
latent_out.set_size(n_cols);
|
|
latent_out.zeros();
|
|
|
|
tsquared_out.set_size(n_rows);
|
|
tsquared_out.zeros();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
//! \brief
|
|
//! principal component analysis -- 3 arguments complex version
|
|
//! computation is done via singular value decomposition
|
|
//! coeff_out -> principal component coefficients
|
|
//! score_out -> projected samples
|
|
//! latent_out -> eigenvalues of principal vectors
|
|
template<typename T1>
|
|
inline
|
|
bool
|
|
op_princomp::direct_princomp
|
|
(
|
|
Mat< std::complex<typename T1::pod_type> >& coeff_out,
|
|
Mat< std::complex<typename T1::pod_type> >& score_out,
|
|
Col< typename T1::pod_type >& latent_out,
|
|
const Base< std::complex<typename T1::pod_type>, T1 >& X,
|
|
const typename arma_cx_only<typename T1::elem_type>::result* junk
|
|
)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
arma_ignore(junk);
|
|
|
|
typedef typename T1::pod_type T;
|
|
typedef std::complex<T> eT;
|
|
|
|
const unwrap_check<T1> Y( X.get_ref(), score_out );
|
|
const Mat<eT>& in = Y.M;
|
|
|
|
const uword n_rows = in.n_rows;
|
|
const uword n_cols = in.n_cols;
|
|
|
|
if(n_rows > 1) // more than one sample
|
|
{
|
|
// subtract the mean - use score_out as temporary matrix
|
|
score_out = in; score_out.each_row() -= mean(in);
|
|
|
|
// singular value decomposition
|
|
Mat<eT> U;
|
|
Col< T> s;
|
|
|
|
const bool svd_ok = svd(U, s, coeff_out, score_out);
|
|
|
|
if(svd_ok == false) { return false; }
|
|
|
|
// normalize the eigenvalues
|
|
s /= std::sqrt( double(n_rows - 1) );
|
|
|
|
// project the samples to the principals
|
|
score_out *= coeff_out;
|
|
|
|
if(n_rows <= n_cols) // number of samples is less than their dimensionality
|
|
{
|
|
score_out.cols(n_rows-1,n_cols-1).zeros();
|
|
|
|
Col<T> s_tmp = zeros< Col<T> >(n_cols);
|
|
s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2);
|
|
s = s_tmp;
|
|
}
|
|
|
|
// compute the eigenvalues of the principal vectors
|
|
latent_out = s%s;
|
|
}
|
|
else // 0 or 1 samples
|
|
{
|
|
coeff_out.eye(n_cols, n_cols);
|
|
|
|
score_out.copy_size(in);
|
|
score_out.zeros();
|
|
|
|
latent_out.set_size(n_cols);
|
|
latent_out.zeros();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
//! \brief
|
|
//! principal component analysis -- 2 arguments complex version
|
|
//! computation is done via singular value decomposition
|
|
//! coeff_out -> principal component coefficients
|
|
//! score_out -> projected samples
|
|
template<typename T1>
|
|
inline
|
|
bool
|
|
op_princomp::direct_princomp
|
|
(
|
|
Mat< std::complex<typename T1::pod_type> >& coeff_out,
|
|
Mat< std::complex<typename T1::pod_type> >& score_out,
|
|
const Base< std::complex<typename T1::pod_type>, T1 >& X,
|
|
const typename arma_cx_only<typename T1::elem_type>::result* junk
|
|
)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
arma_ignore(junk);
|
|
|
|
typedef typename T1::pod_type T;
|
|
typedef std::complex<T> eT;
|
|
|
|
const unwrap_check<T1> Y( X.get_ref(), score_out );
|
|
const Mat<eT>& in = Y.M;
|
|
|
|
const uword n_rows = in.n_rows;
|
|
const uword n_cols = in.n_cols;
|
|
|
|
if(n_rows > 1) // more than one sample
|
|
{
|
|
// subtract the mean - use score_out as temporary matrix
|
|
score_out = in; score_out.each_row() -= mean(in);
|
|
|
|
// singular value decomposition
|
|
Mat<eT> U;
|
|
Col< T> s;
|
|
|
|
const bool svd_ok = svd(U, s, coeff_out, score_out);
|
|
|
|
if(svd_ok == false) { return false; }
|
|
|
|
// normalize the eigenvalues
|
|
s /= std::sqrt( double(n_rows - 1) );
|
|
|
|
// project the samples to the principals
|
|
score_out *= coeff_out;
|
|
|
|
if(n_rows <= n_cols) // number of samples is less than their dimensionality
|
|
{
|
|
score_out.cols(n_rows-1,n_cols-1).zeros();
|
|
}
|
|
|
|
}
|
|
else // 0 or 1 samples
|
|
{
|
|
coeff_out.eye(n_cols, n_cols);
|
|
|
|
score_out.copy_size(in);
|
|
score_out.zeros();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
//! \brief
|
|
//! principal component analysis -- 1 argument complex version
|
|
//! computation is done via singular value decomposition
|
|
//! coeff_out -> principal component coefficients
|
|
template<typename T1>
|
|
inline
|
|
bool
|
|
op_princomp::direct_princomp
|
|
(
|
|
Mat< std::complex<typename T1::pod_type> >& coeff_out,
|
|
const Base< std::complex<typename T1::pod_type>, T1 >& X,
|
|
const typename arma_cx_only<typename T1::elem_type>::result* junk
|
|
)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
arma_ignore(junk);
|
|
|
|
typedef typename T1::pod_type T;
|
|
typedef std::complex<T> eT;
|
|
|
|
const unwrap<T1> Y( X.get_ref() );
|
|
const Mat<eT>& in = Y.M;
|
|
|
|
if(in.n_elem != 0)
|
|
{
|
|
// singular value decomposition
|
|
Mat<eT> U;
|
|
Col< T> s;
|
|
|
|
Mat<eT> tmp = in; tmp.each_row() -= mean(in);
|
|
|
|
const bool svd_ok = svd(U, s, coeff_out, tmp);
|
|
|
|
if(svd_ok == false) { return false; }
|
|
}
|
|
else
|
|
{
|
|
coeff_out.eye(in.n_cols, in.n_cols);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
template<typename T1>
|
|
inline
|
|
void
|
|
op_princomp::apply
|
|
(
|
|
Mat<typename T1::elem_type>& out,
|
|
const Op<T1,op_princomp>& in
|
|
)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
typedef typename T1::elem_type eT;
|
|
|
|
const unwrap_check<T1> tmp(in.m, out);
|
|
const Mat<eT>& A = tmp.M;
|
|
|
|
const bool status = op_princomp::direct_princomp(out, A);
|
|
|
|
if(status == false)
|
|
{
|
|
out.reset();
|
|
|
|
arma_bad("princomp(): decomposition failed");
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//! @}
|