486 lines
13 KiB
C++
486 lines
13 KiB
C++
// Copyright (C) 2013 National ICT Australia (NICTA)
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public
|
|
// License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
// -------------------------------------------------------------------
|
|
//
|
|
// Written by Conrad Sanderson - http://conradsanderson.id.au
|
|
|
|
|
|
//! \addtogroup herk
|
|
//! @{
|
|
|
|
|
|
|
|
class herk_helper
|
|
{
|
|
public:
|
|
|
|
template<typename eT>
|
|
inline
|
|
static
|
|
void
|
|
inplace_conj_copy_upper_tri_to_lower_tri(Mat<eT>& C)
|
|
{
|
|
// under the assumption that C is a square matrix
|
|
|
|
const uword N = C.n_rows;
|
|
|
|
for(uword k=0; k < N; ++k)
|
|
{
|
|
eT* colmem = C.colptr(k);
|
|
|
|
for(uword i=(k+1); i < N; ++i)
|
|
{
|
|
colmem[i] = std::conj( C.at(k,i) );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template<typename eT>
|
|
static
|
|
arma_hot
|
|
arma_pure
|
|
inline
|
|
eT
|
|
dot_conj_row(const uword n_elem, const eT* const A, const Mat<eT>& B, const uword row)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
typedef typename get_pod_type<eT>::result T;
|
|
|
|
T val_real = T(0);
|
|
T val_imag = T(0);
|
|
|
|
for(uword i=0; i<n_elem; ++i)
|
|
{
|
|
const std::complex<T>& X = A[i];
|
|
const std::complex<T>& Y = B.at(row,i);
|
|
|
|
const T a = X.real();
|
|
const T b = X.imag();
|
|
|
|
const T c = Y.real();
|
|
const T d = Y.imag();
|
|
|
|
val_real += (a*c) + (b*d);
|
|
val_imag += (b*c) - (a*d);
|
|
}
|
|
|
|
return std::complex<T>(val_real, val_imag);
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<const bool do_trans_A=false, const bool use_alpha=false, const bool use_beta=false>
|
|
class herk_vec
|
|
{
|
|
public:
|
|
|
|
template<typename T, typename TA>
|
|
arma_hot
|
|
inline
|
|
static
|
|
void
|
|
apply
|
|
(
|
|
Mat< std::complex<T> >& C,
|
|
const TA& A,
|
|
const T alpha = T(1),
|
|
const T beta = T(0)
|
|
)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
typedef std::complex<T> eT;
|
|
|
|
const uword A_n_rows = A.n_rows;
|
|
const uword A_n_cols = A.n_cols;
|
|
|
|
// for beta != 0, C is assumed to be hermitian
|
|
|
|
// do_trans_A == false -> C = alpha * A * A^H + beta*C
|
|
// do_trans_A == true -> C = alpha * A^H * A + beta*C
|
|
|
|
const eT* A_mem = A.memptr();
|
|
|
|
if(do_trans_A == false)
|
|
{
|
|
if(A_n_rows == 1)
|
|
{
|
|
const eT acc = op_cdot::direct_cdot(A_n_cols, A_mem, A_mem);
|
|
|
|
if( (use_alpha == false) && (use_beta == false) ) { C[0] = acc; }
|
|
else if( (use_alpha == true ) && (use_beta == false) ) { C[0] = alpha*acc; }
|
|
else if( (use_alpha == false) && (use_beta == true ) ) { C[0] = acc + beta*C[0]; }
|
|
else if( (use_alpha == true ) && (use_beta == true ) ) { C[0] = alpha*acc + beta*C[0]; }
|
|
}
|
|
else
|
|
for(uword row_A=0; row_A < A_n_rows; ++row_A)
|
|
{
|
|
const eT& A_rowdata = A_mem[row_A];
|
|
|
|
for(uword k=row_A; k < A_n_rows; ++k)
|
|
{
|
|
const eT acc = A_rowdata * std::conj( A_mem[k] );
|
|
|
|
if( (use_alpha == false) && (use_beta == false) )
|
|
{
|
|
C.at(row_A, k) = acc;
|
|
if(row_A != k) { C.at(k, row_A) = std::conj(acc); }
|
|
}
|
|
else
|
|
if( (use_alpha == true) && (use_beta == false) )
|
|
{
|
|
const eT val = alpha*acc;
|
|
|
|
C.at(row_A, k) = val;
|
|
if(row_A != k) { C.at(k, row_A) = std::conj(val); }
|
|
}
|
|
else
|
|
if( (use_alpha == false) && (use_beta == true) )
|
|
{
|
|
C.at(row_A, k) = acc + beta*C.at(row_A, k);
|
|
if(row_A != k) { C.at(k, row_A) = std::conj(acc) + beta*C.at(k, row_A); }
|
|
}
|
|
else
|
|
if( (use_alpha == true) && (use_beta == true) )
|
|
{
|
|
const eT val = alpha*acc;
|
|
|
|
C.at(row_A, k) = val + beta*C.at(row_A, k);
|
|
if(row_A != k) { C.at(k, row_A) = std::conj(val) + beta*C.at(k, row_A); }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
if(do_trans_A == true)
|
|
{
|
|
if(A_n_cols == 1)
|
|
{
|
|
const eT acc = op_cdot::direct_cdot(A_n_rows, A_mem, A_mem);
|
|
|
|
if( (use_alpha == false) && (use_beta == false) ) { C[0] = acc; }
|
|
else if( (use_alpha == true ) && (use_beta == false) ) { C[0] = alpha*acc; }
|
|
else if( (use_alpha == false) && (use_beta == true ) ) { C[0] = acc + beta*C[0]; }
|
|
else if( (use_alpha == true ) && (use_beta == true ) ) { C[0] = alpha*acc + beta*C[0]; }
|
|
}
|
|
else
|
|
for(uword col_A=0; col_A < A_n_cols; ++col_A)
|
|
{
|
|
// col_A is interpreted as row_A when storing the results in matrix C
|
|
|
|
const eT A_coldata = std::conj( A_mem[col_A] );
|
|
|
|
for(uword k=col_A; k < A_n_cols ; ++k)
|
|
{
|
|
const eT acc = A_coldata * A_mem[k];
|
|
|
|
if( (use_alpha == false) && (use_beta == false) )
|
|
{
|
|
C.at(col_A, k) = acc;
|
|
if(col_A != k) { C.at(k, col_A) = std::conj(acc); }
|
|
}
|
|
else
|
|
if( (use_alpha == true ) && (use_beta == false) )
|
|
{
|
|
const eT val = alpha*acc;
|
|
|
|
C.at(col_A, k) = val;
|
|
if(col_A != k) { C.at(k, col_A) = std::conj(val); }
|
|
}
|
|
else
|
|
if( (use_alpha == false) && (use_beta == true ) )
|
|
{
|
|
C.at(col_A, k) = acc + beta*C.at(col_A, k);
|
|
if(col_A != k) { C.at(k, col_A) = std::conj(acc) + beta*C.at(k, col_A); }
|
|
}
|
|
else
|
|
if( (use_alpha == true ) && (use_beta == true ) )
|
|
{
|
|
const eT val = alpha*acc;
|
|
|
|
C.at(col_A, k) = val + beta*C.at(col_A, k);
|
|
if(col_A != k) { C.at(k, col_A) = std::conj(val) + beta*C.at(k, col_A); }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<const bool do_trans_A=false, const bool use_alpha=false, const bool use_beta=false>
|
|
class herk_emul
|
|
{
|
|
public:
|
|
|
|
template<typename T, typename TA>
|
|
arma_hot
|
|
inline
|
|
static
|
|
void
|
|
apply
|
|
(
|
|
Mat< std::complex<T> >& C,
|
|
const TA& A,
|
|
const T alpha = T(1),
|
|
const T beta = T(0)
|
|
)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
typedef std::complex<T> eT;
|
|
|
|
// do_trans_A == false -> C = alpha * A * A^H + beta*C
|
|
// do_trans_A == true -> C = alpha * A^H * A + beta*C
|
|
|
|
if(do_trans_A == false)
|
|
{
|
|
Mat<eT> AA;
|
|
|
|
op_htrans::apply_mat_noalias(AA, A);
|
|
|
|
herk_emul<true, use_alpha, use_beta>::apply(C, AA, alpha, beta);
|
|
}
|
|
else
|
|
if(do_trans_A == true)
|
|
{
|
|
const uword A_n_rows = A.n_rows;
|
|
const uword A_n_cols = A.n_cols;
|
|
|
|
for(uword col_A=0; col_A < A_n_cols; ++col_A)
|
|
{
|
|
// col_A is interpreted as row_A when storing the results in matrix C
|
|
|
|
const eT* A_coldata = A.colptr(col_A);
|
|
|
|
for(uword k=col_A; k < A_n_cols ; ++k)
|
|
{
|
|
const eT acc = op_cdot::direct_cdot(A_n_rows, A_coldata, A.colptr(k));
|
|
|
|
if( (use_alpha == false) && (use_beta == false) )
|
|
{
|
|
C.at(col_A, k) = acc;
|
|
if(col_A != k) { C.at(k, col_A) = std::conj(acc); }
|
|
}
|
|
else
|
|
if( (use_alpha == true) && (use_beta == false) )
|
|
{
|
|
const eT val = alpha*acc;
|
|
|
|
C.at(col_A, k) = val;
|
|
if(col_A != k) { C.at(k, col_A) = std::conj(val); }
|
|
}
|
|
else
|
|
if( (use_alpha == false) && (use_beta == true) )
|
|
{
|
|
C.at(col_A, k) = acc + beta*C.at(col_A, k);
|
|
if(col_A != k) { C.at(k, col_A) = std::conj(acc) + beta*C.at(k, col_A); }
|
|
}
|
|
else
|
|
if( (use_alpha == true) && (use_beta == true) )
|
|
{
|
|
const eT val = alpha*acc;
|
|
|
|
C.at(col_A, k) = val + beta*C.at(col_A, k);
|
|
if(col_A != k) { C.at(k, col_A) = std::conj(val) + beta*C.at(k, col_A); }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<const bool do_trans_A=false, const bool use_alpha=false, const bool use_beta=false>
|
|
class herk
|
|
{
|
|
public:
|
|
|
|
template<typename T, typename TA>
|
|
inline
|
|
static
|
|
void
|
|
apply_blas_type( Mat<std::complex<T> >& C, const TA& A, const T alpha = T(1), const T beta = T(0) )
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
const uword threshold = 16;
|
|
|
|
if(A.is_vec())
|
|
{
|
|
// work around poor handling of vectors by herk() in ATLAS 3.8.4 and standard BLAS
|
|
|
|
herk_vec<do_trans_A, use_alpha, use_beta>::apply(C,A,alpha,beta);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
if( (A.n_elem <= threshold) )
|
|
{
|
|
herk_emul<do_trans_A, use_alpha, use_beta>::apply(C,A,alpha,beta);
|
|
}
|
|
else
|
|
{
|
|
#if defined(ARMA_USE_ATLAS)
|
|
{
|
|
if(use_beta == true)
|
|
{
|
|
typedef typename std::complex<T> eT;
|
|
|
|
// use a temporary matrix, as we can't assume that matrix C is already symmetric
|
|
Mat<eT> D(C.n_rows, C.n_cols);
|
|
|
|
herk<do_trans_A, use_alpha, false>::apply_blas_type(D,A,alpha);
|
|
|
|
// NOTE: assuming beta=1; this is okay for now, as currently glue_times only uses beta=1
|
|
arrayops::inplace_plus(C.memptr(), D.memptr(), C.n_elem);
|
|
|
|
return;
|
|
}
|
|
|
|
atlas::cblas_herk<T>
|
|
(
|
|
atlas::CblasColMajor,
|
|
atlas::CblasUpper,
|
|
(do_trans_A) ? CblasConjTrans : atlas::CblasNoTrans,
|
|
C.n_cols,
|
|
(do_trans_A) ? A.n_rows : A.n_cols,
|
|
(use_alpha) ? alpha : T(1),
|
|
A.mem,
|
|
(do_trans_A) ? A.n_rows : C.n_cols,
|
|
(use_beta) ? beta : T(0),
|
|
C.memptr(),
|
|
C.n_cols
|
|
);
|
|
|
|
herk_helper::inplace_conj_copy_upper_tri_to_lower_tri(C);
|
|
}
|
|
#elif defined(ARMA_USE_BLAS)
|
|
{
|
|
if(use_beta == true)
|
|
{
|
|
typedef typename std::complex<T> eT;
|
|
|
|
// use a temporary matrix, as we can't assume that matrix C is already symmetric
|
|
Mat<eT> D(C.n_rows, C.n_cols);
|
|
|
|
herk<do_trans_A, use_alpha, false>::apply_blas_type(D,A,alpha);
|
|
|
|
// NOTE: assuming beta=1; this is okay for now, as currently glue_times only uses beta=1
|
|
arrayops::inplace_plus(C.memptr(), D.memptr(), C.n_elem);
|
|
|
|
return;
|
|
}
|
|
|
|
arma_extra_debug_print("blas::herk()");
|
|
|
|
const char uplo = 'U';
|
|
|
|
const char trans_A = (do_trans_A) ? 'C' : 'N';
|
|
|
|
const blas_int n = blas_int(C.n_cols);
|
|
const blas_int k = (do_trans_A) ? blas_int(A.n_rows) : blas_int(A.n_cols);
|
|
|
|
const T local_alpha = (use_alpha) ? alpha : T(1);
|
|
const T local_beta = (use_beta) ? beta : T(0);
|
|
|
|
const blas_int lda = (do_trans_A) ? k : n;
|
|
|
|
arma_extra_debug_print( arma_boost::format("blas::herk(): trans_A = %c") % trans_A );
|
|
|
|
blas::herk<T>
|
|
(
|
|
&uplo,
|
|
&trans_A,
|
|
&n,
|
|
&k,
|
|
&local_alpha,
|
|
A.mem,
|
|
&lda,
|
|
&local_beta,
|
|
C.memptr(),
|
|
&n // &ldc
|
|
);
|
|
|
|
herk_helper::inplace_conj_copy_upper_tri_to_lower_tri(C);
|
|
}
|
|
#else
|
|
{
|
|
herk_emul<do_trans_A, use_alpha, use_beta>::apply(C,A,alpha,beta);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename eT, typename TA>
|
|
inline
|
|
static
|
|
void
|
|
apply( Mat<eT>& C, const TA& A, const eT alpha = eT(1), const eT beta = eT(0), const typename arma_not_cx<eT>::result* junk = 0 )
|
|
{
|
|
arma_ignore(C);
|
|
arma_ignore(A);
|
|
arma_ignore(alpha);
|
|
arma_ignore(beta);
|
|
arma_ignore(junk);
|
|
|
|
// herk() cannot be used by non-complex matrices
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
template<typename TA>
|
|
arma_inline
|
|
static
|
|
void
|
|
apply
|
|
(
|
|
Mat< std::complex<float> >& C,
|
|
const TA& A,
|
|
const float alpha = float(1),
|
|
const float beta = float(0)
|
|
)
|
|
{
|
|
herk<do_trans_A, use_alpha, use_beta>::apply_blas_type(C,A,alpha,beta);
|
|
}
|
|
|
|
|
|
|
|
template<typename TA>
|
|
arma_inline
|
|
static
|
|
void
|
|
apply
|
|
(
|
|
Mat< std::complex<double> >& C,
|
|
const TA& A,
|
|
const double alpha = double(1),
|
|
const double beta = double(0)
|
|
)
|
|
{
|
|
herk<do_trans_A, use_alpha, use_beta>::apply_blas_type(C,A,alpha,beta);
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
//! @}
|