AnalysisSystemForRadionucli.../include/armadillo_bits/fn_randn.hpp
2024-06-04 15:25:02 +08:00

174 lines
3.7 KiB
C++

// Copyright (C) 2008-2015 National ICT Australia (NICTA)
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
// -------------------------------------------------------------------
//
// Written by Conrad Sanderson - http://conradsanderson.id.au
//! \addtogroup fn_randn
//! @{
inline
double
randn()
{
return double(arma_rng::randn<double>());
}
template<typename eT>
inline
typename arma_scalar_only<eT>::result
randn()
{
return eT(arma_rng::randn<eT>());
}
//! Generate a vector with all elements set to random values with a gaussian distribution (zero mean, unit variance)
arma_inline
const Gen<vec, gen_randn>
randn(const uword n_elem)
{
arma_extra_debug_sigprint();
return Gen<vec, gen_randn>(n_elem, 1);
}
template<typename obj_type>
arma_inline
const Gen<obj_type, gen_randn>
randn(const uword n_elem, const arma_empty_class junk1 = arma_empty_class(), const typename arma_Mat_Col_Row_only<obj_type>::result* junk2 = 0)
{
arma_extra_debug_sigprint();
arma_ignore(junk1);
arma_ignore(junk2);
if(is_Row<obj_type>::value == true)
{
return Gen<obj_type, gen_randn>(1, n_elem);
}
else
{
return Gen<obj_type, gen_randn>(n_elem, 1);
}
}
//! Generate a dense matrix with all elements set to random values with a gaussian distribution (zero mean, unit variance)
arma_inline
const Gen<mat, gen_randn>
randn(const uword n_rows, const uword n_cols)
{
arma_extra_debug_sigprint();
return Gen<mat, gen_randn>(n_rows, n_cols);
}
arma_inline
const Gen<mat, gen_randn>
randn(const SizeMat& s)
{
arma_extra_debug_sigprint();
return Gen<mat, gen_randn>(s.n_rows, s.n_cols);
}
template<typename obj_type>
arma_inline
const Gen<obj_type, gen_randn>
randn(const uword n_rows, const uword n_cols, const typename arma_Mat_Col_Row_only<obj_type>::result* junk = 0)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
if(is_Col<obj_type>::value == true)
{
arma_debug_check( (n_cols != 1), "randn(): incompatible size" );
}
else
if(is_Row<obj_type>::value == true)
{
arma_debug_check( (n_rows != 1), "randn(): incompatible size" );
}
return Gen<obj_type, gen_randn>(n_rows, n_cols);
}
template<typename obj_type>
arma_inline
const Gen<obj_type, gen_randn>
randn(const SizeMat& s, const typename arma_Mat_Col_Row_only<obj_type>::result* junk = 0)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
return randn<obj_type>(s.n_rows, s.n_cols);
}
arma_inline
const GenCube<cube::elem_type, gen_randn>
randn(const uword n_rows, const uword n_cols, const uword n_slices)
{
arma_extra_debug_sigprint();
return GenCube<cube::elem_type, gen_randn>(n_rows, n_cols, n_slices);
}
arma_inline
const GenCube<cube::elem_type, gen_randn>
randn(const SizeCube& s)
{
arma_extra_debug_sigprint();
return GenCube<cube::elem_type, gen_randn>(s.n_rows, s.n_cols, s.n_slices);
}
template<typename cube_type>
arma_inline
const GenCube<typename cube_type::elem_type, gen_randn>
randn(const uword n_rows, const uword n_cols, const uword n_slices, const typename arma_Cube_only<cube_type>::result* junk = 0)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
return GenCube<typename cube_type::elem_type, gen_randn>(n_rows, n_cols, n_slices);
}
template<typename cube_type>
arma_inline
const GenCube<typename cube_type::elem_type, gen_randn>
randn(const SizeCube& s, const typename arma_Cube_only<cube_type>::result* junk = 0)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
return GenCube<typename cube_type::elem_type, gen_randn>(s.n_rows, s.n_cols, s.n_slices);
}
//! @}