391 lines
8.4 KiB
C++
391 lines
8.4 KiB
C++
// Copyright (C) 2008-2015 National ICT Australia (NICTA)
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public
|
|
// License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
// -------------------------------------------------------------------
|
|
//
|
|
// Written by Conrad Sanderson - http://conradsanderson.id.au
|
|
|
|
|
|
//! \addtogroup op_misc
|
|
//! @{
|
|
|
|
|
|
|
|
template<typename T1>
|
|
inline
|
|
void
|
|
op_real::apply( Mat<typename T1::pod_type>& out, const mtOp<typename T1::pod_type, T1, op_real>& X )
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
typedef typename T1::pod_type T;
|
|
|
|
const Proxy<T1> P(X.m);
|
|
|
|
const uword n_rows = P.get_n_rows();
|
|
const uword n_cols = P.get_n_cols();
|
|
|
|
out.set_size(n_rows, n_cols);
|
|
|
|
T* out_mem = out.memptr();
|
|
|
|
if(Proxy<T1>::prefer_at_accessor == false)
|
|
{
|
|
typedef typename Proxy<T1>::ea_type ea_type;
|
|
|
|
const uword n_elem = P.get_n_elem();
|
|
ea_type A = P.get_ea();
|
|
|
|
for(uword i=0; i < n_elem; ++i)
|
|
{
|
|
out_mem[i] = std::real( A[i] );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(uword col=0; col < n_cols; ++col)
|
|
for(uword row=0; row < n_rows; ++row)
|
|
{
|
|
*out_mem = std::real( P.at(row,col) );
|
|
out_mem++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename T1>
|
|
inline
|
|
void
|
|
op_real::apply( Cube<typename T1::pod_type>& out, const mtOpCube<typename T1::pod_type, T1, op_real>& X )
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
typedef typename T1::pod_type T;
|
|
|
|
const ProxyCube<T1> P(X.m);
|
|
|
|
const uword n_rows = P.get_n_rows();
|
|
const uword n_cols = P.get_n_cols();
|
|
const uword n_slices = P.get_n_slices();
|
|
|
|
out.set_size(n_rows, n_cols, n_slices);
|
|
|
|
T* out_mem = out.memptr();
|
|
|
|
if(ProxyCube<T1>::prefer_at_accessor == false)
|
|
{
|
|
typedef typename ProxyCube<T1>::ea_type ea_type;
|
|
|
|
const uword n_elem = P.get_n_elem();
|
|
ea_type A = P.get_ea();
|
|
|
|
for(uword i=0; i < n_elem; ++i)
|
|
{
|
|
out_mem[i] = std::real( A[i] );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(uword slice=0; slice < n_slices; ++slice)
|
|
for(uword col=0; col < n_cols; ++col )
|
|
for(uword row=0; row < n_rows; ++row )
|
|
{
|
|
*out_mem = std::real( P.at(row,col,slice) );
|
|
out_mem++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename T1>
|
|
inline
|
|
void
|
|
op_imag::apply( Mat<typename T1::pod_type>& out, const mtOp<typename T1::pod_type, T1, op_imag>& X )
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
typedef typename T1::pod_type T;
|
|
|
|
const Proxy<T1> P(X.m);
|
|
|
|
const uword n_rows = P.get_n_rows();
|
|
const uword n_cols = P.get_n_cols();
|
|
|
|
out.set_size(n_rows, n_cols);
|
|
|
|
T* out_mem = out.memptr();
|
|
|
|
if(Proxy<T1>::prefer_at_accessor == false)
|
|
{
|
|
typedef typename Proxy<T1>::ea_type ea_type;
|
|
|
|
const uword n_elem = P.get_n_elem();
|
|
ea_type A = P.get_ea();
|
|
|
|
for(uword i=0; i < n_elem; ++i)
|
|
{
|
|
out_mem[i] = std::imag( A[i] );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(uword col=0; col < n_cols; ++col)
|
|
for(uword row=0; row < n_rows; ++row)
|
|
{
|
|
*out_mem = std::imag( P.at(row,col) );
|
|
out_mem++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename T1>
|
|
inline
|
|
void
|
|
op_imag::apply( Cube<typename T1::pod_type>& out, const mtOpCube<typename T1::pod_type, T1, op_imag>& X )
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
typedef typename T1::pod_type T;
|
|
|
|
const ProxyCube<T1> P(X.m);
|
|
|
|
const uword n_rows = P.get_n_rows();
|
|
const uword n_cols = P.get_n_cols();
|
|
const uword n_slices = P.get_n_slices();
|
|
|
|
out.set_size(n_rows, n_cols, n_slices);
|
|
|
|
T* out_mem = out.memptr();
|
|
|
|
if(ProxyCube<T1>::prefer_at_accessor == false)
|
|
{
|
|
typedef typename ProxyCube<T1>::ea_type ea_type;
|
|
|
|
const uword n_elem = P.get_n_elem();
|
|
ea_type A = P.get_ea();
|
|
|
|
for(uword i=0; i < n_elem; ++i)
|
|
{
|
|
out_mem[i] = std::imag( A[i] );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(uword slice=0; slice < n_slices; ++slice)
|
|
for(uword col=0; col < n_cols; ++col )
|
|
for(uword row=0; row < n_rows; ++row )
|
|
{
|
|
*out_mem = std::imag( P.at(row,col,slice) );
|
|
out_mem++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename T1>
|
|
inline
|
|
void
|
|
op_abs::apply( Mat<typename T1::pod_type>& out, const mtOp<typename T1::pod_type, T1, op_abs>& X )
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
typedef typename T1::pod_type T;
|
|
|
|
const Proxy<T1> P(X.m);
|
|
|
|
const uword n_rows = P.get_n_rows();
|
|
const uword n_cols = P.get_n_cols();
|
|
|
|
out.set_size(n_rows, n_cols);
|
|
|
|
T* out_mem = out.memptr();
|
|
|
|
if(Proxy<T1>::prefer_at_accessor == false)
|
|
{
|
|
typedef typename Proxy<T1>::ea_type ea_type;
|
|
|
|
const uword n_elem = P.get_n_elem();
|
|
ea_type A = P.get_ea();
|
|
|
|
for(uword i=0; i < n_elem; ++i)
|
|
{
|
|
out_mem[i] = std::abs( A[i] );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(uword col=0; col < n_cols; ++col)
|
|
for(uword row=0; row < n_rows; ++row)
|
|
{
|
|
*out_mem = std::abs( P.at(row,col) );
|
|
out_mem++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename T1>
|
|
inline
|
|
void
|
|
op_abs::apply( Cube<typename T1::pod_type>& out, const mtOpCube<typename T1::pod_type, T1, op_abs>& X )
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
typedef typename T1::pod_type T;
|
|
|
|
const ProxyCube<T1> P(X.m);
|
|
|
|
const uword n_rows = P.get_n_rows();
|
|
const uword n_cols = P.get_n_cols();
|
|
const uword n_slices = P.get_n_slices();
|
|
|
|
out.set_size(n_rows, n_cols, n_slices);
|
|
|
|
T* out_mem = out.memptr();
|
|
|
|
if(ProxyCube<T1>::prefer_at_accessor == false)
|
|
{
|
|
typedef typename ProxyCube<T1>::ea_type ea_type;
|
|
|
|
const uword n_elem = P.get_n_elem();
|
|
ea_type A = P.get_ea();
|
|
|
|
for(uword i=0; i < n_elem; ++i)
|
|
{
|
|
out_mem[i] = std::abs( A[i] );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(uword slice=0; slice < n_slices; ++slice)
|
|
for(uword col=0; col < n_cols; ++col )
|
|
for(uword row=0; row < n_rows; ++row )
|
|
{
|
|
*out_mem = std::abs( P.at(row,col,slice) );
|
|
out_mem++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename T1>
|
|
inline
|
|
void
|
|
op_orth::apply( Mat<typename T1::elem_type>& out, const Op<T1, op_orth>& expr )
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
typedef typename T1::elem_type eT;
|
|
typedef typename T1::pod_type T;
|
|
|
|
T tol = access::tmp_real(expr.aux);
|
|
|
|
arma_debug_check((tol < T(0)), "orth(): tolerance must be >= 0");
|
|
|
|
const unwrap<T1> tmp(expr.m);
|
|
const Mat<eT>& X = tmp.M;
|
|
|
|
Mat<eT> U;
|
|
Col< T> s;
|
|
Mat<eT> V;
|
|
|
|
const bool status = auxlib::svd_dc(U, s, V, X);
|
|
|
|
V.reset();
|
|
|
|
if(status == false) { out.reset(); arma_bad("orth(): svd failed"); return; }
|
|
|
|
if(s.is_empty()) { out.reset(); return; }
|
|
|
|
const uword s_n_elem = s.n_elem;
|
|
const T* s_mem = s.memptr();
|
|
|
|
// set tolerance to default if it hasn't been specified
|
|
if(tol == T(0)) { tol = (std::max)(X.n_rows, X.n_cols) * s_mem[0] * std::numeric_limits<T>::epsilon(); }
|
|
|
|
uword count = 0;
|
|
|
|
for(uword i=0; i < s_n_elem; ++i) { count += (s_mem[i] > tol) ? uword(1) : uword(0); }
|
|
|
|
if(count > 0)
|
|
{
|
|
out = U.head_cols(count); // out *= eT(-1);
|
|
}
|
|
else
|
|
{
|
|
out.set_size(X.n_rows, 0);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename T1>
|
|
inline
|
|
void
|
|
op_null::apply( Mat<typename T1::elem_type>& out, const Op<T1, op_null>& expr )
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
typedef typename T1::elem_type eT;
|
|
typedef typename T1::pod_type T;
|
|
|
|
T tol = access::tmp_real(expr.aux);
|
|
|
|
arma_debug_check((tol < T(0)), "null(): tolerance must be >= 0");
|
|
|
|
const unwrap<T1> tmp(expr.m);
|
|
const Mat<eT>& X = tmp.M;
|
|
|
|
Mat<eT> U;
|
|
Col< T> s;
|
|
Mat<eT> V;
|
|
|
|
const bool status = auxlib::svd_dc(U, s, V, X);
|
|
|
|
U.reset();
|
|
|
|
if(status == false) { out.reset(); arma_bad("null(): svd failed"); return; }
|
|
|
|
if(s.is_empty()) { out.reset(); return; }
|
|
|
|
const uword s_n_elem = s.n_elem;
|
|
const T* s_mem = s.memptr();
|
|
|
|
// set tolerance to default if it hasn't been specified
|
|
if(tol == T(0)) { tol = (std::max)(X.n_rows, X.n_cols) * s_mem[0] * std::numeric_limits<T>::epsilon(); }
|
|
|
|
uword count = 0;
|
|
|
|
for(uword i=0; i < s_n_elem; ++i) { count += (s_mem[i] > tol) ? uword(1) : uword(0); }
|
|
|
|
if(count < X.n_cols)
|
|
{
|
|
out = V.tail_cols(X.n_cols - count);
|
|
|
|
const uword out_n_elem = out.n_elem;
|
|
eT* out_mem = out.memptr();
|
|
|
|
for(uword i=0; i<out_n_elem; ++i)
|
|
{
|
|
if(std::abs(out_mem[i]) < std::numeric_limits<T>::epsilon()) { out_mem[i] = eT(0); }
|
|
}
|
|
}
|
|
else
|
|
{
|
|
out.set_size(X.n_cols, 0);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//! @}
|