AnalysisSystemForRadionucli.../include/armadillo_bits/op_htrans_meat.hpp
2024-06-04 15:25:02 +08:00

558 lines
11 KiB
C++

// Copyright (C) 2008-2015 National ICT Australia (NICTA)
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
// -------------------------------------------------------------------
//
// Written by Conrad Sanderson - http://conradsanderson.id.au
// Written by Ryan Curtin
//! \addtogroup op_htrans
//! @{
template<typename eT>
arma_hot
arma_inline
void
op_htrans::apply_mat_noalias(Mat<eT>& out, const Mat<eT>& A, const typename arma_not_cx<eT>::result* junk)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
op_strans::apply_mat_noalias(out, A);
}
template<typename eT>
arma_hot
inline
void
op_htrans::apply_mat_noalias(Mat<eT>& out, const Mat<eT>& A, const typename arma_cx_only<eT>::result* junk)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
const uword A_n_rows = A.n_rows;
const uword A_n_cols = A.n_cols;
out.set_size(A_n_cols, A_n_rows);
if( (A_n_cols == 1) || (A_n_rows == 1) )
{
const uword n_elem = A.n_elem;
const eT* A_mem = A.memptr();
eT* out_mem = out.memptr();
for(uword i=0; i < n_elem; ++i)
{
out_mem[i] = std::conj(A_mem[i]);
}
}
else
{
eT* outptr = out.memptr();
for(uword k=0; k < A_n_rows; ++k)
{
const eT* Aptr = &(A.at(k,0));
for(uword j=0; j < A_n_cols; ++j)
{
(*outptr) = std::conj(*Aptr);
Aptr += A_n_rows;
outptr++;
}
}
}
}
template<typename eT>
arma_hot
arma_inline
void
op_htrans::apply_mat_inplace(Mat<eT>& out, const typename arma_not_cx<eT>::result* junk)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
op_strans::apply_mat_inplace(out);
}
template<typename eT>
arma_hot
inline
void
op_htrans::apply_mat_inplace(Mat<eT>& out, const typename arma_cx_only<eT>::result* junk)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
const uword n_rows = out.n_rows;
const uword n_cols = out.n_cols;
if(n_rows == n_cols)
{
arma_extra_debug_print("doing in-place hermitian transpose of a square matrix");
for(uword col=0; col < n_cols; ++col)
{
eT* coldata = out.colptr(col);
out.at(col,col) = std::conj( out.at(col,col) );
for(uword row=(col+1); row < n_rows; ++row)
{
const eT val1 = std::conj(coldata[row]);
const eT val2 = std::conj(out.at(col,row));
out.at(col,row) = val1;
coldata[row] = val2;
}
}
}
else
{
Mat<eT> tmp;
op_htrans::apply_mat_noalias(tmp, out);
out.steal_mem(tmp);
}
}
template<typename eT>
arma_hot
arma_inline
void
op_htrans::apply_mat(Mat<eT>& out, const Mat<eT>& A, const typename arma_not_cx<eT>::result* junk)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
op_strans::apply_mat(out, A);
}
template<typename eT>
arma_hot
inline
void
op_htrans::apply_mat(Mat<eT>& out, const Mat<eT>& A, const typename arma_cx_only<eT>::result* junk)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
if(&out != &A)
{
op_htrans::apply_mat_noalias(out, A);
}
else
{
op_htrans::apply_mat_inplace(out);
}
}
template<typename T1>
arma_hot
inline
void
op_htrans::apply_proxy(Mat<typename T1::elem_type>& out, const T1& X)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT;
const Proxy<T1> P(X);
// allow detection of in-place transpose
if( (is_Mat<typename Proxy<T1>::stored_type>::value == true) && (Proxy<T1>::fake_mat == false) )
{
const unwrap<typename Proxy<T1>::stored_type> tmp(P.Q);
op_htrans::apply_mat(out, tmp.M);
}
else
{
const uword n_rows = P.get_n_rows();
const uword n_cols = P.get_n_cols();
const bool is_alias = P.is_alias(out);
if( (resolves_to_vector<T1>::value == true) && (Proxy<T1>::prefer_at_accessor == false) )
{
if(is_alias == false)
{
out.set_size(n_cols, n_rows);
eT* out_mem = out.memptr();
const uword n_elem = P.get_n_elem();
typename Proxy<T1>::ea_type Pea = P.get_ea();
for(uword i=0; i < n_elem; ++i)
{
out_mem[i] = std::conj(Pea[i]);
}
}
else // aliasing
{
Mat<eT> out2(n_cols, n_rows);
eT* out_mem = out2.memptr();
const uword n_elem = P.get_n_elem();
typename Proxy<T1>::ea_type Pea = P.get_ea();
for(uword i=0; i < n_elem; ++i)
{
out_mem[i] = std::conj(Pea[i]);
}
out.steal_mem(out2);
}
}
else
{
if(is_alias == false)
{
out.set_size(n_cols, n_rows);
eT* outptr = out.memptr();
for(uword k=0; k < n_rows; ++k)
{
for(uword j=0; j < n_cols; ++j)
{
(*outptr) = std::conj(P.at(k,j));
outptr++;
}
}
}
else // aliasing
{
Mat<eT> out2(n_cols, n_rows);
eT* out2ptr = out2.memptr();
for(uword k=0; k < n_rows; ++k)
{
for(uword j=0; j < n_cols; ++j)
{
(*out2ptr) = std::conj(P.at(k,j));
out2ptr++;
}
}
out.steal_mem(out2);
}
}
}
}
template<typename T1>
arma_hot
inline
void
op_htrans::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_htrans>& in, const typename arma_not_cx<typename T1::elem_type>::result* junk)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
op_strans::apply_proxy(out, in.m);
}
template<typename T1>
arma_hot
inline
void
op_htrans::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_htrans>& in, const typename arma_cx_only<typename T1::elem_type>::result* junk)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
op_htrans::apply_proxy(out, in.m);
}
template<typename T1>
arma_hot
inline
void
op_htrans::apply(Mat<typename T1::elem_type>& out, const Op< Op<T1, op_trimat>, op_htrans>& in)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT;
const unwrap<T1> tmp(in.m.m);
const Mat<eT>& A = tmp.M;
const bool upper = in.m.aux_uword_a;
op_trimat::apply_htrans(out, A, upper);
}
//
// op_htrans2
template<typename eT>
arma_hot
arma_inline
void
op_htrans2::apply_noalias(Mat<eT>& out, const Mat<eT>& A, const eT val)
{
arma_extra_debug_sigprint();
const uword A_n_rows = A.n_rows;
const uword A_n_cols = A.n_cols;
out.set_size(A_n_cols, A_n_rows);
if( (A_n_cols == 1) || (A_n_rows == 1) )
{
const uword n_elem = A.n_elem;
const eT* A_mem = A.memptr();
eT* out_mem = out.memptr();
for(uword i=0; i < n_elem; ++i)
{
out_mem[i] = val * std::conj(A_mem[i]);
}
}
else
{
eT* outptr = out.memptr();
for(uword k=0; k < A_n_rows; ++k)
{
const eT* Aptr = &(A.at(k,0));
for(uword j=0; j < A_n_cols; ++j)
{
(*outptr) = val * std::conj(*Aptr);
Aptr += A_n_rows;
outptr++;
}
}
}
}
template<typename eT>
arma_hot
inline
void
op_htrans2::apply(Mat<eT>& out, const Mat<eT>& A, const eT val)
{
arma_extra_debug_sigprint();
if(&out != &A)
{
op_htrans2::apply_noalias(out, A, val);
}
else
{
const uword n_rows = out.n_rows;
const uword n_cols = out.n_cols;
if(n_rows == n_cols)
{
arma_extra_debug_print("doing in-place hermitian transpose of a square matrix");
// TODO: do multiplication while swapping
for(uword col=0; col < n_cols; ++col)
{
eT* coldata = out.colptr(col);
out.at(col,col) = std::conj( out.at(col,col) );
for(uword row=(col+1); row < n_rows; ++row)
{
const eT val1 = std::conj(coldata[row]);
const eT val2 = std::conj(out.at(col,row));
out.at(col,row) = val1;
coldata[row] = val2;
}
}
arrayops::inplace_mul( out.memptr(), val, out.n_elem );
}
else
{
Mat<eT> tmp;
op_htrans2::apply_noalias(tmp, A, val);
out.steal_mem(tmp);
}
}
}
template<typename T1>
arma_hot
inline
void
op_htrans2::apply_proxy(Mat<typename T1::elem_type>& out, const T1& X, const typename T1::elem_type val)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT;
const Proxy<T1> P(X);
// allow detection of in-place transpose
if( (is_Mat<typename Proxy<T1>::stored_type>::value == true) && (Proxy<T1>::fake_mat == false) )
{
const unwrap<typename Proxy<T1>::stored_type> tmp(P.Q);
op_htrans2::apply(out, tmp.M, val);
}
else
{
const uword n_rows = P.get_n_rows();
const uword n_cols = P.get_n_cols();
const bool is_alias = P.is_alias(out);
if( (resolves_to_vector<T1>::value == true) && (Proxy<T1>::prefer_at_accessor == false) )
{
if(is_alias == false)
{
out.set_size(n_cols, n_rows);
eT* out_mem = out.memptr();
const uword n_elem = P.get_n_elem();
typename Proxy<T1>::ea_type Pea = P.get_ea();
for(uword i=0; i < n_elem; ++i)
{
out_mem[i] = val * std::conj(Pea[i]);
}
}
else // aliasing
{
Mat<eT> out2(n_cols, n_rows);
eT* out_mem = out2.memptr();
const uword n_elem = P.get_n_elem();
typename Proxy<T1>::ea_type Pea = P.get_ea();
for(uword i=0; i < n_elem; ++i)
{
out_mem[i] = val * std::conj(Pea[i]);
}
out.steal_mem(out2);
}
}
else
{
if(is_alias == false)
{
out.set_size(n_cols, n_rows);
eT* outptr = out.memptr();
for(uword k=0; k < n_rows; ++k)
{
for(uword j=0; j < n_cols; ++j)
{
(*outptr) = val * std::conj(P.at(k,j));
outptr++;
}
}
}
else // aliasing
{
Mat<eT> out2(n_cols, n_rows);
eT* out2ptr = out2.memptr();
for(uword k=0; k < n_rows; ++k)
{
for(uword j=0; j < n_cols; ++j)
{
(*out2ptr) = val * std::conj(P.at(k,j));
out2ptr++;
}
}
out.steal_mem(out2);
}
}
}
}
template<typename T1>
arma_hot
inline
void
op_htrans2::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_htrans2>& in, const typename arma_not_cx<typename T1::elem_type>::result* junk)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
op_strans2::apply_proxy(out, in.m, in.aux);
}
template<typename T1>
arma_hot
inline
void
op_htrans2::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_htrans2>& in, const typename arma_cx_only<typename T1::elem_type>::result* junk)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
op_htrans2::apply_proxy(out, in.m, in.aux);
}
//! @}