138 lines
3.0 KiB
C++
138 lines
3.0 KiB
C++
// Copyright (C) 2009-2013 National ICT Australia (NICTA)
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public
|
|
// License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
// -------------------------------------------------------------------
|
|
//
|
|
// Written by Conrad Sanderson - http://conradsanderson.id.au
|
|
// Written by Dimitrios Bouzas
|
|
|
|
|
|
//! \addtogroup glue_kron
|
|
//! @{
|
|
|
|
|
|
|
|
//! \brief
|
|
//! both input matrices have the same element type
|
|
template<typename eT>
|
|
inline
|
|
void
|
|
glue_kron::direct_kron(Mat<eT>& out, const Mat<eT>& A, const Mat<eT>& B)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
const uword A_rows = A.n_rows;
|
|
const uword A_cols = A.n_cols;
|
|
const uword B_rows = B.n_rows;
|
|
const uword B_cols = B.n_cols;
|
|
|
|
out.set_size(A_rows*B_rows, A_cols*B_cols);
|
|
|
|
for(uword j = 0; j < A_cols; j++)
|
|
{
|
|
for(uword i = 0; i < A_rows; i++)
|
|
{
|
|
out.submat(i*B_rows, j*B_cols, (i+1)*B_rows-1, (j+1)*B_cols-1) = A.at(i,j) * B;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//! \brief
|
|
//! different types of input matrices
|
|
//! A -> complex, B -> basic element type
|
|
template<typename T>
|
|
inline
|
|
void
|
|
glue_kron::direct_kron(Mat< std::complex<T> >& out, const Mat< std::complex<T> >& A, const Mat<T>& B)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
typedef typename std::complex<T> eT;
|
|
|
|
const uword A_rows = A.n_rows;
|
|
const uword A_cols = A.n_cols;
|
|
const uword B_rows = B.n_rows;
|
|
const uword B_cols = B.n_cols;
|
|
|
|
out.set_size(A_rows*B_rows, A_cols*B_cols);
|
|
|
|
Mat<eT> tmp_B = conv_to< Mat<eT> >::from(B);
|
|
|
|
for(uword j = 0; j < A_cols; j++)
|
|
{
|
|
for(uword i = 0; i < A_rows; i++)
|
|
{
|
|
out.submat(i*B_rows, j*B_cols, (i+1)*B_rows-1, (j+1)*B_cols-1) = A.at(i,j) * tmp_B;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//! \brief
|
|
//! different types of input matrices
|
|
//! A -> basic element type, B -> complex
|
|
template<typename T>
|
|
inline
|
|
void
|
|
glue_kron::direct_kron(Mat< std::complex<T> >& out, const Mat<T>& A, const Mat< std::complex<T> >& B)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
const uword A_rows = A.n_rows;
|
|
const uword A_cols = A.n_cols;
|
|
const uword B_rows = B.n_rows;
|
|
const uword B_cols = B.n_cols;
|
|
|
|
out.set_size(A_rows*B_rows, A_cols*B_cols);
|
|
|
|
for(uword j = 0; j < A_cols; j++)
|
|
{
|
|
for(uword i = 0; i < A_rows; i++)
|
|
{
|
|
out.submat(i*B_rows, j*B_cols, (i+1)*B_rows-1, (j+1)*B_cols-1) = A.at(i,j) * B;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//! \brief
|
|
//! apply Kronecker product for two objects with same element type
|
|
template<typename T1, typename T2>
|
|
inline
|
|
void
|
|
glue_kron::apply(Mat<typename T1::elem_type>& out, const Glue<T1,T2,glue_kron>& X)
|
|
{
|
|
arma_extra_debug_sigprint();
|
|
|
|
typedef typename T1::elem_type eT;
|
|
|
|
const unwrap<T1> A_tmp(X.A);
|
|
const unwrap<T2> B_tmp(X.B);
|
|
|
|
const Mat<eT>& A = A_tmp.M;
|
|
const Mat<eT>& B = B_tmp.M;
|
|
|
|
if( (&out != &A) && (&out != &B) )
|
|
{
|
|
glue_kron::direct_kron(out, A, B);
|
|
}
|
|
else
|
|
{
|
|
Mat<eT> tmp;
|
|
|
|
glue_kron::direct_kron(tmp, A, B);
|
|
|
|
out.steal_mem(tmp);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//! @}
|