// Copyright (C) 2008-2011 National ICT Australia (NICTA) // // This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this // file, You can obtain one at http://mozilla.org/MPL/2.0/. // ------------------------------------------------------------------- // // Written by Conrad Sanderson - http://conradsanderson.id.au //! \addtogroup constants_compat //! @{ // the Math and Phy classes are kept for compatibility with old code; // for new code, use the Datum class instead // eg. instead of math::pi(), use datum::pi template class Math { public: // the long lengths of the constants are for future support of "long double" // and any smart compiler that does high-precision computation at compile-time //! ratio of any circle's circumference to its diameter static eT pi() { return eT(3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679); } //! base of the natural logarithm static eT e() { return eT(2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274); } //! Euler's constant, aka Euler-Mascheroni constant static eT euler() { return eT(0.5772156649015328606065120900824024310421593359399235988057672348848677267776646709369470632917467495); } //! golden ratio static eT gratio() { return eT(1.6180339887498948482045868343656381177203091798057628621354486227052604628189024497072072041893911374); } //! square root of 2 static eT sqrt2() { return eT(1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727); } //! the difference between 1 and the least value greater than 1 that is representable static eT eps() { return std::numeric_limits::epsilon(); } //! log of the minimum representable value static eT log_min() { static const eT out = std::log(std::numeric_limits::min()); return out; } //! log of the maximum representable value static eT log_max() { static const eT out = std::log(std::numeric_limits::max()); return out; } //! "not a number" static eT nan() { return priv::Datum_helper::nan(); } //! infinity static eT inf() { return priv::Datum_helper::inf(); } }; //! Physical constants taken from NIST 2010 CODATA values, and some from WolframAlpha (values provided as of 2009-06-23) //! http://physics.nist.gov/cuu/Constants //! http://www.wolframalpha.com //! See also http://en.wikipedia.org/wiki/Physical_constant template class Phy { public: //! atomic mass constant (in kg) static eT m_u() { return eT(1.660539040e-27); } //! Avogadro constant static eT N_A() { return eT(6.022140857e23); } //! Boltzmann constant (in joules per kelvin) static eT k() { return eT(1.38064852e-23); } //! Boltzmann constant (in eV/K) static eT k_evk() { return eT(8.6173303e-5); } //! Bohr radius (in meters) static eT a_0() { return eT(0.52917721067e-10); } //! Bohr magneton static eT mu_B() { return eT(927.4009994e-26); } //! characteristic impedance of vacuum (in ohms) static eT Z_0() { return eT(376.730313461771); } //! conductance quantum (in siemens) static eT G_0() { return eT(7.7480917310e-5); } //! Coulomb's constant (in meters per farad) static eT k_e() { return eT(8.9875517873681764e9); } //! electric constant (in farads per meter) static eT eps_0() { return eT(8.85418781762039e-12); } //! electron mass (in kg) static eT m_e() { return eT(9.10938356e-31); } //! electron volt (in joules) static eT eV() { return eT(1.6021766208e-19); } //! elementary charge (in coulombs) static eT e() { return eT(1.6021766208e-19); } //! Faraday constant (in coulombs) static eT F() { return eT(96485.33289); } //! fine-structure constant static eT alpha() { return eT(7.2973525664e-3); } //! inverse fine-structure constant static eT alpha_inv() { return eT(137.035999139); } //! Josephson constant static eT K_J() { return eT(483597.8525e9); } //! magnetic constant (in henries per meter) static eT mu_0() { return eT(1.25663706143592e-06); } //! magnetic flux quantum (in webers) static eT phi_0() { return eT(2.067833667e-15); } //! molar gas constant (in joules per mole kelvin) static eT R() { return eT(8.3144598); } //! Newtonian constant of gravitation (in newton square meters per kilogram squared) static eT G() { return eT(6.67408e-11); } //! Planck constant (in joule seconds) static eT h() { return eT(6.626070040e-34); } //! Planck constant over 2 pi, aka reduced Planck constant (in joule seconds) static eT h_bar() { return eT(1.054571800e-34); } //! proton mass (in kg) static eT m_p() { return eT(1.672621898e-27); } //! Rydberg constant (in reciprocal meters) static eT R_inf() { return eT(10973731.568508); } //! speed of light in vacuum (in meters per second) static eT c_0() { return eT(299792458.0); } //! Stefan-Boltzmann constant static eT sigma() { return eT(5.670367e-8); } //! von Klitzing constant (in ohms) static eT R_k() { return eT(25812.8074555); } //! Wien wavelength displacement law constant static eT b() { return eT(2.8977729e-3); } }; typedef Math fmath; typedef Math math; typedef Phy fphy; typedef Phy phy; //! @}