// Copyright (C) 2010-2013 National ICT Australia (NICTA) // // This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this // file, You can obtain one at http://mozilla.org/MPL/2.0/. // ------------------------------------------------------------------- // // Written by Conrad Sanderson - http://conradsanderson.id.au // Written by Dimitrios Bouzas // Written by Stanislav Funiak //! \addtogroup op_princomp //! @{ //! \brief //! principal component analysis -- 4 arguments version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients //! score_out -> projected samples //! latent_out -> eigenvalues of principal vectors //! tsquared_out -> Hotelling's T^2 statistic template inline bool op_princomp::direct_princomp ( Mat& coeff_out, Mat& score_out, Col& latent_out, Col& tsquared_out, const Base& X, const typename arma_not_cx::result* junk ) { arma_extra_debug_sigprint(); arma_ignore(junk); typedef typename T1::elem_type eT; const unwrap_check Y( X.get_ref(), score_out ); const Mat& in = Y.M; const uword n_rows = in.n_rows; const uword n_cols = in.n_cols; if(n_rows > 1) // more than one sample { // subtract the mean - use score_out as temporary matrix score_out = in; score_out.each_row() -= mean(in); // singular value decomposition Mat U; Col s; const bool svd_ok = svd(U, s, coeff_out, score_out); if(svd_ok == false) { return false; } // normalize the eigenvalues s /= std::sqrt( double(n_rows - 1) ); // project the samples to the principals score_out *= coeff_out; if(n_rows <= n_cols) // number of samples is less than their dimensionality { score_out.cols(n_rows-1,n_cols-1).zeros(); //Col s_tmp = zeros< Col >(n_cols); Col s_tmp(n_cols); s_tmp.zeros(); s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); s = s_tmp; // compute the Hotelling's T-squared s_tmp.rows(0,n_rows-2) = eT(1) / s_tmp.rows(0,n_rows-2); const Mat S = score_out * diagmat(Col(s_tmp)); tsquared_out = sum(S%S,1); } else { // compute the Hotelling's T-squared const Mat S = score_out * diagmat(Col( eT(1) / s)); tsquared_out = sum(S%S,1); } // compute the eigenvalues of the principal vectors latent_out = s%s; } else // 0 or 1 samples { coeff_out.eye(n_cols, n_cols); score_out.copy_size(in); score_out.zeros(); latent_out.set_size(n_cols); latent_out.zeros(); tsquared_out.set_size(n_rows); tsquared_out.zeros(); } return true; } //! \brief //! principal component analysis -- 3 arguments version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients //! score_out -> projected samples //! latent_out -> eigenvalues of principal vectors template inline bool op_princomp::direct_princomp ( Mat& coeff_out, Mat& score_out, Col& latent_out, const Base& X, const typename arma_not_cx::result* junk ) { arma_extra_debug_sigprint(); arma_ignore(junk); typedef typename T1::elem_type eT; const unwrap_check Y( X.get_ref(), score_out ); const Mat& in = Y.M; const uword n_rows = in.n_rows; const uword n_cols = in.n_cols; if(n_rows > 1) // more than one sample { // subtract the mean - use score_out as temporary matrix score_out = in; score_out.each_row() -= mean(in); // singular value decomposition Mat U; Col s; const bool svd_ok = svd(U, s, coeff_out, score_out); if(svd_ok == false) { return false; } // normalize the eigenvalues s /= std::sqrt( double(n_rows - 1) ); // project the samples to the principals score_out *= coeff_out; if(n_rows <= n_cols) // number of samples is less than their dimensionality { score_out.cols(n_rows-1,n_cols-1).zeros(); Col s_tmp = zeros< Col >(n_cols); s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); s = s_tmp; } // compute the eigenvalues of the principal vectors latent_out = s%s; } else // 0 or 1 samples { coeff_out.eye(n_cols, n_cols); score_out.copy_size(in); score_out.zeros(); latent_out.set_size(n_cols); latent_out.zeros(); } return true; } //! \brief //! principal component analysis -- 2 arguments version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients //! score_out -> projected samples template inline bool op_princomp::direct_princomp ( Mat& coeff_out, Mat& score_out, const Base& X, const typename arma_not_cx::result* junk ) { arma_extra_debug_sigprint(); arma_ignore(junk); typedef typename T1::elem_type eT; const unwrap_check Y( X.get_ref(), score_out ); const Mat& in = Y.M; const uword n_rows = in.n_rows; const uword n_cols = in.n_cols; if(n_rows > 1) // more than one sample { // subtract the mean - use score_out as temporary matrix score_out = in; score_out.each_row() -= mean(in); // singular value decomposition Mat U; Col s; const bool svd_ok = svd(U, s, coeff_out, score_out); if(svd_ok == false) { return false; } // normalize the eigenvalues s /= std::sqrt( double(n_rows - 1) ); // project the samples to the principals score_out *= coeff_out; if(n_rows <= n_cols) // number of samples is less than their dimensionality { score_out.cols(n_rows-1,n_cols-1).zeros(); Col s_tmp = zeros< Col >(n_cols); s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); s = s_tmp; } } else // 0 or 1 samples { coeff_out.eye(n_cols, n_cols); score_out.copy_size(in); score_out.zeros(); } return true; } //! \brief //! principal component analysis -- 1 argument version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients template inline bool op_princomp::direct_princomp ( Mat& coeff_out, const Base& X, const typename arma_not_cx::result* junk ) { arma_extra_debug_sigprint(); arma_ignore(junk); typedef typename T1::elem_type eT; const unwrap Y( X.get_ref() ); const Mat& in = Y.M; if(in.n_elem != 0) { Mat tmp = in; tmp.each_row() -= mean(in); // singular value decomposition Mat U; Col s; const bool svd_ok = svd(U, s, coeff_out, tmp); if(svd_ok == false) { return false; } } else { coeff_out.eye(in.n_cols, in.n_cols); } return true; } //! \brief //! principal component analysis -- 4 arguments complex version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients //! score_out -> projected samples //! latent_out -> eigenvalues of principal vectors //! tsquared_out -> Hotelling's T^2 statistic template inline bool op_princomp::direct_princomp ( Mat< std::complex >& coeff_out, Mat< std::complex >& score_out, Col< typename T1::pod_type >& latent_out, Col< std::complex >& tsquared_out, const Base< std::complex, T1 >& X, const typename arma_cx_only::result* junk ) { arma_extra_debug_sigprint(); arma_ignore(junk); typedef typename T1::pod_type T; typedef std::complex eT; const unwrap_check Y( X.get_ref(), score_out ); const Mat& in = Y.M; const uword n_rows = in.n_rows; const uword n_cols = in.n_cols; if(n_rows > 1) // more than one sample { // subtract the mean - use score_out as temporary matrix score_out = in; score_out.each_row() -= mean(in); // singular value decomposition Mat U; Col< T> s; const bool svd_ok = svd(U, s, coeff_out, score_out); if(svd_ok == false) { return false; } // normalize the eigenvalues s /= std::sqrt( double(n_rows - 1) ); // project the samples to the principals score_out *= coeff_out; if(n_rows <= n_cols) // number of samples is less than their dimensionality { score_out.cols(n_rows-1,n_cols-1).zeros(); Col s_tmp = zeros< Col >(n_cols); s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); s = s_tmp; // compute the Hotelling's T-squared s_tmp.rows(0,n_rows-2) = 1.0 / s_tmp.rows(0,n_rows-2); const Mat S = score_out * diagmat(Col(s_tmp)); tsquared_out = sum(S%S,1); } else { // compute the Hotelling's T-squared const Mat S = score_out * diagmat(Col(T(1) / s)); tsquared_out = sum(S%S,1); } // compute the eigenvalues of the principal vectors latent_out = s%s; } else // 0 or 1 samples { coeff_out.eye(n_cols, n_cols); score_out.copy_size(in); score_out.zeros(); latent_out.set_size(n_cols); latent_out.zeros(); tsquared_out.set_size(n_rows); tsquared_out.zeros(); } return true; } //! \brief //! principal component analysis -- 3 arguments complex version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients //! score_out -> projected samples //! latent_out -> eigenvalues of principal vectors template inline bool op_princomp::direct_princomp ( Mat< std::complex >& coeff_out, Mat< std::complex >& score_out, Col< typename T1::pod_type >& latent_out, const Base< std::complex, T1 >& X, const typename arma_cx_only::result* junk ) { arma_extra_debug_sigprint(); arma_ignore(junk); typedef typename T1::pod_type T; typedef std::complex eT; const unwrap_check Y( X.get_ref(), score_out ); const Mat& in = Y.M; const uword n_rows = in.n_rows; const uword n_cols = in.n_cols; if(n_rows > 1) // more than one sample { // subtract the mean - use score_out as temporary matrix score_out = in; score_out.each_row() -= mean(in); // singular value decomposition Mat U; Col< T> s; const bool svd_ok = svd(U, s, coeff_out, score_out); if(svd_ok == false) { return false; } // normalize the eigenvalues s /= std::sqrt( double(n_rows - 1) ); // project the samples to the principals score_out *= coeff_out; if(n_rows <= n_cols) // number of samples is less than their dimensionality { score_out.cols(n_rows-1,n_cols-1).zeros(); Col s_tmp = zeros< Col >(n_cols); s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); s = s_tmp; } // compute the eigenvalues of the principal vectors latent_out = s%s; } else // 0 or 1 samples { coeff_out.eye(n_cols, n_cols); score_out.copy_size(in); score_out.zeros(); latent_out.set_size(n_cols); latent_out.zeros(); } return true; } //! \brief //! principal component analysis -- 2 arguments complex version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients //! score_out -> projected samples template inline bool op_princomp::direct_princomp ( Mat< std::complex >& coeff_out, Mat< std::complex >& score_out, const Base< std::complex, T1 >& X, const typename arma_cx_only::result* junk ) { arma_extra_debug_sigprint(); arma_ignore(junk); typedef typename T1::pod_type T; typedef std::complex eT; const unwrap_check Y( X.get_ref(), score_out ); const Mat& in = Y.M; const uword n_rows = in.n_rows; const uword n_cols = in.n_cols; if(n_rows > 1) // more than one sample { // subtract the mean - use score_out as temporary matrix score_out = in; score_out.each_row() -= mean(in); // singular value decomposition Mat U; Col< T> s; const bool svd_ok = svd(U, s, coeff_out, score_out); if(svd_ok == false) { return false; } // normalize the eigenvalues s /= std::sqrt( double(n_rows - 1) ); // project the samples to the principals score_out *= coeff_out; if(n_rows <= n_cols) // number of samples is less than their dimensionality { score_out.cols(n_rows-1,n_cols-1).zeros(); } } else // 0 or 1 samples { coeff_out.eye(n_cols, n_cols); score_out.copy_size(in); score_out.zeros(); } return true; } //! \brief //! principal component analysis -- 1 argument complex version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients template inline bool op_princomp::direct_princomp ( Mat< std::complex >& coeff_out, const Base< std::complex, T1 >& X, const typename arma_cx_only::result* junk ) { arma_extra_debug_sigprint(); arma_ignore(junk); typedef typename T1::pod_type T; typedef std::complex eT; const unwrap Y( X.get_ref() ); const Mat& in = Y.M; if(in.n_elem != 0) { // singular value decomposition Mat U; Col< T> s; Mat tmp = in; tmp.each_row() -= mean(in); const bool svd_ok = svd(U, s, coeff_out, tmp); if(svd_ok == false) { return false; } } else { coeff_out.eye(in.n_cols, in.n_cols); } return true; } template inline void op_princomp::apply ( Mat& out, const Op& in ) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; const unwrap_check tmp(in.m, out); const Mat& A = tmp.M; const bool status = op_princomp::direct_princomp(out, A); if(status == false) { out.reset(); arma_bad("princomp(): decomposition failed"); } } //! @}