// This Source Code Form is a compilation of: // (1) source code written by Conrad Sanderson, and // (2) a modified form of source code referred to as "kissfft.hh". // // This compilation is Copyright (C) 2013 National ICT Australia (NICTA) // and is subject to the terms of the Mozilla Public License, v. 2.0. // // The source code that is distinct and separate from "kissfft.hh" // is Copyright (C) 2013 National ICT Australia (NICTA) // and is subject to the terms of the Mozilla Public License, v. 2.0. // // If a copy of the MPL was not distributed with this file, // You can obtain one at http://mozilla.org/MPL/2.0/. // // The original "kissfft.hh" source code is licensed under a 3-clause BSD license, // as follows: // // Copyright (c) 2003-2010 Mark Borgerding // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * Neither the author nor the names of any contributors may be used to endorse or promote // products derived from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS // OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY // AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER // OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, // OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS // OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON // ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE // OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. //! \addtogroup fft_engine //! @{ template struct store {}; template struct store { static const uword N = fixed_N; arma_aligned cx_type coeffs_array[fixed_N]; inline store() {} inline store(uword) {} arma_inline cx_type* coeffs_ptr() { return &coeffs_array[0]; } arma_inline const cx_type* coeffs_ptr() const { return &coeffs_array[0]; } }; template struct store { const uword N; podarray coeffs_array; inline store() : N(0) {} inline store(uword in_N) : N(in_N) { coeffs_array.set_size(N); } arma_inline cx_type* coeffs_ptr() { return coeffs_array.memptr(); } arma_inline const cx_type* coeffs_ptr() const { return coeffs_array.memptr(); } }; template class fft_engine : public store 0)> { public: typedef typename get_pod_type::result T; using store 0)>::N; using store 0)>::coeffs_ptr; podarray residue; podarray radix; podarray tmp_array; template inline uword calc_radix() { uword i = 0; for(uword n = N, r=4; n >= 2; ++i) { while( (n % r) > 0 ) { switch(r) { case 2: r = 3; break; case 4: r = 2; break; default: r += 2; break; } if(r*r > n) { r = n; } } n /= r; if(fill) { residue[i] = n; radix[i] = r; } } return i; } inline fft_engine(const uword in_N) : store< cx_type, fixed_N, (fixed_N > 0) >(in_N) { arma_extra_debug_sigprint(); const uword len = calc_radix(); residue.set_size(len); radix.set_size(len); calc_radix(); // calculate the constant coefficients cx_type* coeffs = coeffs_ptr(); const T k = T( (inverse) ? +2 : -2 ) * std::acos( T(-1) ) / T(N); for(uword i=0; i < N; ++i) { coeffs[i] = std::exp( cx_type(T(0), i*k) ); } } arma_hot inline void butterfly_2(cx_type* Y, const uword stride, const uword m) { arma_extra_debug_sigprint(); const cx_type* coeffs = coeffs_ptr(); for(uword i=0; i < m; ++i) { const cx_type t = Y[i+m] * coeffs[i*stride]; Y[i+m] = Y[i] - t; Y[i ] += t; } } arma_hot inline void butterfly_3(cx_type* Y, const uword stride, const uword m) { arma_extra_debug_sigprint(); arma_aligned cx_type tmp[5]; cx_type* coeffs1 = coeffs_ptr(); cx_type* coeffs2 = coeffs1; const T coeff_sm_imag = coeffs1[stride*m].imag(); const uword n = m*2; // TODO: rearrange the indices within tmp[] into a more sane order for(uword i = m; i > 0; --i) { tmp[1] = Y[m] * (*coeffs1); tmp[2] = Y[n] * (*coeffs2); tmp[0] = tmp[1] - tmp[2]; tmp[0] *= coeff_sm_imag; tmp[3] = tmp[1] + tmp[2]; Y[m] = cx_type( (Y[0].real() - (T(0.5)*tmp[3].real())), (Y[0].imag() - (T(0.5)*tmp[3].imag())) ); Y[0] += tmp[3]; Y[n] = cx_type( (Y[m].real() + tmp[0].imag()), (Y[m].imag() - tmp[0].real()) ); Y[m] += cx_type( -tmp[0].imag(), tmp[0].real() ); Y++; coeffs1 += stride; coeffs2 += stride*2; } } arma_hot inline void butterfly_4(cx_type* Y, const uword stride, const uword m) { arma_extra_debug_sigprint(); arma_aligned cx_type tmp[7]; const cx_type* coeffs = coeffs_ptr(); const uword m2 = m*2; const uword m3 = m*3; // TODO: rearrange the indices within tmp[] into a more sane order for(uword i=0; i < m; ++i) { tmp[0] = Y[i + m ] * coeffs[i*stride ]; tmp[2] = Y[i + m3] * coeffs[i*stride*3]; tmp[3] = tmp[0] + tmp[2]; //tmp[4] = tmp[0] - tmp[2]; //tmp[4] = (inverse) ? cx_type( -(tmp[4].imag()), tmp[4].real() ) : cx_type( tmp[4].imag(), -tmp[4].real() ); tmp[4] = (inverse) ? cx_type( (tmp[2].imag() - tmp[0].imag()), (tmp[0].real() - tmp[2].real()) ) : cx_type( (tmp[0].imag() - tmp[2].imag()), (tmp[2].real() - tmp[0].real()) ); tmp[1] = Y[i + m2] * coeffs[i*stride*2]; tmp[5] = Y[i] - tmp[1]; Y[i ] += tmp[1]; Y[i + m2] = Y[i] - tmp[3]; Y[i ] += tmp[3]; Y[i + m ] = tmp[5] + tmp[4]; Y[i + m3] = tmp[5] - tmp[4]; } } inline arma_hot void butterfly_5(cx_type* Y, const uword stride, const uword m) { arma_extra_debug_sigprint(); arma_aligned cx_type tmp[13]; const cx_type* coeffs = coeffs_ptr(); const T a_real = coeffs[stride*1*m].real(); const T a_imag = coeffs[stride*1*m].imag(); const T b_real = coeffs[stride*2*m].real(); const T b_imag = coeffs[stride*2*m].imag(); cx_type* Y0 = Y; cx_type* Y1 = Y + 1*m; cx_type* Y2 = Y + 2*m; cx_type* Y3 = Y + 3*m; cx_type* Y4 = Y + 4*m; for(uword i=0; i < m; ++i) { tmp[0] = (*Y0); tmp[1] = (*Y1) * coeffs[stride*1*i]; tmp[2] = (*Y2) * coeffs[stride*2*i]; tmp[3] = (*Y3) * coeffs[stride*3*i]; tmp[4] = (*Y4) * coeffs[stride*4*i]; tmp[7] = tmp[1] + tmp[4]; tmp[8] = tmp[2] + tmp[3]; tmp[9] = tmp[2] - tmp[3]; tmp[10] = tmp[1] - tmp[4]; (*Y0) += tmp[7]; (*Y0) += tmp[8]; tmp[5] = tmp[0] + cx_type( ( (tmp[7].real() * a_real) + (tmp[8].real() * b_real) ), ( (tmp[7].imag() * a_real) + (tmp[8].imag() * b_real) ) ); tmp[6] = cx_type( ( (tmp[10].imag() * a_imag) + (tmp[9].imag() * b_imag) ), ( -(tmp[10].real() * a_imag) - (tmp[9].real() * b_imag) ) ); (*Y1) = tmp[5] - tmp[6]; (*Y4) = tmp[5] + tmp[6]; tmp[11] = tmp[0] + cx_type( ( (tmp[7].real() * b_real) + (tmp[8].real() * a_real) ), ( (tmp[7].imag() * b_real) + (tmp[8].imag() * a_real) ) ); tmp[12] = cx_type( ( -(tmp[10].imag() * b_imag) + (tmp[9].imag() * a_imag) ), ( (tmp[10].real() * b_imag) - (tmp[9].real() * a_imag) ) ); (*Y2) = tmp[11] + tmp[12]; (*Y3) = tmp[11] - tmp[12]; Y0++; Y1++; Y2++; Y3++; Y4++; } } arma_hot inline void butterfly_N(cx_type* Y, const uword stride, const uword m, const uword r) { arma_extra_debug_sigprint(); const cx_type* coeffs = coeffs_ptr(); tmp_array.set_min_size(r); cx_type* tmp = tmp_array.memptr(); for(uword u=0; u < m; ++u) { uword k = u; for(uword v=0; v < r; ++v) { tmp[v] = Y[k]; k += m; } k = u; for(uword v=0; v < r; ++v) { Y[k] = tmp[0]; uword j = 0; for(uword w=1; w < r; ++w) { j += stride * k; if(j >= N) { j -= N; } Y[k] += tmp[w] * coeffs[j]; } k += m; } } } inline void run(cx_type* Y, const cx_type* X, const uword stage = 0, const uword stride = 1) { arma_extra_debug_sigprint(); const uword m = residue[stage]; const uword r = radix[stage]; const cx_type *Y_end = Y + r*m; if(m == 1) { for(cx_type* Yi = Y; Yi != Y_end; Yi++, X += stride) { (*Yi) = (*X); } } else { const uword next_stage = stage + 1; const uword next_stride = stride * r; for(cx_type* Yi = Y; Yi != Y_end; Yi += m, X += stride) { run(Yi, X, next_stage, next_stride); } } switch(r) { case 2: butterfly_2(Y, stride, m ); break; case 3: butterfly_3(Y, stride, m ); break; case 4: butterfly_4(Y, stride, m ); break; case 5: butterfly_5(Y, stride, m ); break; default: butterfly_N(Y, stride, m, r); break; } } }; //! @}