338 lines
7.5 KiB
C++
338 lines
7.5 KiB
C++
|
// Copyright (C) 2012-2015 National ICT Australia (NICTA)
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla Public
|
||
|
// License, v. 2.0. If a copy of the MPL was not distributed with this
|
||
|
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
// -------------------------------------------------------------------
|
||
|
//
|
||
|
// Written by Conrad Sanderson - http://conradsanderson.id.au
|
||
|
// Written by Ryan Curtin
|
||
|
|
||
|
|
||
|
//! \addtogroup spop_mean
|
||
|
//! @{
|
||
|
|
||
|
|
||
|
|
||
|
template<typename T1>
|
||
|
inline
|
||
|
void
|
||
|
spop_mean::apply(SpMat<typename T1::elem_type>& out, const SpOp<T1, spop_mean>& in)
|
||
|
{
|
||
|
arma_extra_debug_sigprint();
|
||
|
|
||
|
typedef typename T1::elem_type eT;
|
||
|
|
||
|
const uword dim = in.aux_uword_a;
|
||
|
arma_debug_check( (dim > 1), "mean(): parameter 'dim' must be 0 or 1" );
|
||
|
|
||
|
const SpProxy<T1> p(in.m);
|
||
|
|
||
|
if(p.is_alias(out) == false)
|
||
|
{
|
||
|
spop_mean::apply_noalias_fast(out, p, dim);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
SpMat<eT> tmp;
|
||
|
|
||
|
spop_mean::apply_noalias_fast(tmp, p, dim);
|
||
|
|
||
|
out.steal_mem(tmp);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
template<typename T1>
|
||
|
inline
|
||
|
void
|
||
|
spop_mean::apply_noalias_fast
|
||
|
(
|
||
|
SpMat<typename T1::elem_type>& out,
|
||
|
const SpProxy<T1>& p,
|
||
|
const uword dim
|
||
|
)
|
||
|
{
|
||
|
arma_extra_debug_sigprint();
|
||
|
|
||
|
typedef typename T1::elem_type eT;
|
||
|
typedef typename T1::pod_type T;
|
||
|
|
||
|
const uword p_n_rows = p.get_n_rows();
|
||
|
const uword p_n_cols = p.get_n_cols();
|
||
|
|
||
|
if( (p_n_rows == 0) || (p_n_cols == 0) || (p.get_n_nonzero() == 0) )
|
||
|
{
|
||
|
if(dim == 0) { out.zeros((p_n_rows > 0) ? 1 : 0, p_n_cols); }
|
||
|
if(dim == 1) { out.zeros(p_n_rows, (p_n_cols > 0) ? 1 : 0); }
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if(dim == 0) // find the mean in each column
|
||
|
{
|
||
|
Row<eT> acc(p_n_cols, fill::zeros);
|
||
|
|
||
|
if(SpProxy<T1>::must_use_iterator)
|
||
|
{
|
||
|
typename SpProxy<T1>::const_iterator_type it = p.begin();
|
||
|
typename SpProxy<T1>::const_iterator_type it_end = p.end();
|
||
|
|
||
|
while(it != it_end) { acc[it.col()] += (*it); ++it; }
|
||
|
|
||
|
acc /= T(p_n_rows);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
for(uword col = 0; col < p_n_cols; ++col)
|
||
|
{
|
||
|
acc[col] = arrayops::accumulate
|
||
|
(
|
||
|
&p.get_values()[p.get_col_ptrs()[col]],
|
||
|
p.get_col_ptrs()[col + 1] - p.get_col_ptrs()[col]
|
||
|
) / T(p_n_rows);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
out = acc;
|
||
|
}
|
||
|
else
|
||
|
if(dim == 1) // find the mean in each row
|
||
|
{
|
||
|
Col<eT> acc(p_n_rows, fill::zeros);
|
||
|
|
||
|
typename SpProxy<T1>::const_iterator_type it = p.begin();
|
||
|
typename SpProxy<T1>::const_iterator_type it_end = p.end();
|
||
|
|
||
|
while(it != it_end) { acc[it.row()] += (*it); ++it; }
|
||
|
|
||
|
acc /= T(p_n_cols);
|
||
|
|
||
|
out = acc;
|
||
|
}
|
||
|
|
||
|
if(out.is_finite() == false)
|
||
|
{
|
||
|
spop_mean::apply_noalias_slow(out, p, dim);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
template<typename T1>
|
||
|
inline
|
||
|
void
|
||
|
spop_mean::apply_noalias_slow
|
||
|
(
|
||
|
SpMat<typename T1::elem_type>& out,
|
||
|
const SpProxy<T1>& p,
|
||
|
const uword dim
|
||
|
)
|
||
|
{
|
||
|
arma_extra_debug_sigprint();
|
||
|
|
||
|
typedef typename T1::elem_type eT;
|
||
|
|
||
|
const uword p_n_rows = p.get_n_rows();
|
||
|
const uword p_n_cols = p.get_n_cols();
|
||
|
|
||
|
if(dim == 0) // find the mean in each column
|
||
|
{
|
||
|
arma_extra_debug_print("spop_mean::apply_noalias(): dim = 0");
|
||
|
|
||
|
out.set_size((p_n_rows > 0) ? 1 : 0, p_n_cols);
|
||
|
|
||
|
if( (p_n_rows == 0) || (p.get_n_nonzero() == 0) ) { return; }
|
||
|
|
||
|
for(uword col = 0; col < p_n_cols; ++col)
|
||
|
{
|
||
|
// Do we have to use an iterator or can we use memory directly?
|
||
|
if(SpProxy<T1>::must_use_iterator)
|
||
|
{
|
||
|
typename SpProxy<T1>::const_iterator_type it = p.begin_col(col);
|
||
|
typename SpProxy<T1>::const_iterator_type end = p.begin_col(col + 1);
|
||
|
|
||
|
const uword n_zero = p_n_rows - (end.pos() - it.pos());
|
||
|
|
||
|
out.at(0,col) = spop_mean::iterator_mean(it, end, n_zero, eT(0));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
out.at(0,col) = spop_mean::direct_mean
|
||
|
(
|
||
|
&p.get_values()[p.get_col_ptrs()[col]],
|
||
|
p.get_col_ptrs()[col + 1] - p.get_col_ptrs()[col],
|
||
|
p_n_rows
|
||
|
);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
if(dim == 1) // find the mean in each row
|
||
|
{
|
||
|
arma_extra_debug_print("spop_mean::apply_noalias(): dim = 1");
|
||
|
|
||
|
out.set_size(p_n_rows, (p_n_cols > 0) ? 1 : 0);
|
||
|
|
||
|
if( (p_n_cols == 0) || (p.get_n_nonzero() == 0) ) { return; }
|
||
|
|
||
|
for(uword row = 0; row < p_n_rows; ++row)
|
||
|
{
|
||
|
// We must use an iterator regardless of how it is stored.
|
||
|
typename SpProxy<T1>::const_row_iterator_type it = p.begin_row(row);
|
||
|
typename SpProxy<T1>::const_row_iterator_type end = p.end_row(row);
|
||
|
|
||
|
const uword n_zero = p_n_cols - (end.pos() - it.pos());
|
||
|
|
||
|
out.at(row,0) = spop_mean::iterator_mean(it, end, n_zero, eT(0));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
template<typename eT>
|
||
|
inline
|
||
|
eT
|
||
|
spop_mean::direct_mean
|
||
|
(
|
||
|
const eT* const X,
|
||
|
const uword length,
|
||
|
const uword N
|
||
|
)
|
||
|
{
|
||
|
arma_extra_debug_sigprint();
|
||
|
|
||
|
typedef typename get_pod_type<eT>::result T;
|
||
|
|
||
|
const eT result = ((length > 0) && (N > 0)) ? eT(arrayops::accumulate(X, length) / T(N)) : eT(0);
|
||
|
|
||
|
return arma_isfinite(result) ? result : spop_mean::direct_mean_robust(X, length, N);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
template<typename eT>
|
||
|
inline
|
||
|
eT
|
||
|
spop_mean::direct_mean_robust
|
||
|
(
|
||
|
const eT* const X,
|
||
|
const uword length,
|
||
|
const uword N
|
||
|
)
|
||
|
{
|
||
|
arma_extra_debug_sigprint();
|
||
|
|
||
|
typedef typename get_pod_type<eT>::result T;
|
||
|
|
||
|
uword i, j;
|
||
|
|
||
|
eT r_mean = eT(0);
|
||
|
|
||
|
const uword diff = (N - length); // number of zeros
|
||
|
|
||
|
for(i = 0, j = 1; j < length; i += 2, j += 2)
|
||
|
{
|
||
|
const eT Xi = X[i];
|
||
|
const eT Xj = X[j];
|
||
|
|
||
|
r_mean += (Xi - r_mean) / T(diff + j);
|
||
|
r_mean += (Xj - r_mean) / T(diff + j + 1);
|
||
|
}
|
||
|
|
||
|
if(i < length)
|
||
|
{
|
||
|
const eT Xi = X[i];
|
||
|
|
||
|
r_mean += (Xi - r_mean) / T(diff + i + 1);
|
||
|
}
|
||
|
|
||
|
return r_mean;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
template<typename T1>
|
||
|
inline
|
||
|
typename T1::elem_type
|
||
|
spop_mean::mean_all(const SpBase<typename T1::elem_type, T1>& X)
|
||
|
{
|
||
|
arma_extra_debug_sigprint();
|
||
|
|
||
|
SpProxy<T1> p(X.get_ref());
|
||
|
|
||
|
if(SpProxy<T1>::must_use_iterator)
|
||
|
{
|
||
|
typename SpProxy<T1>::const_iterator_type it = p.begin();
|
||
|
typename SpProxy<T1>::const_iterator_type end = p.end();
|
||
|
|
||
|
return spop_mean::iterator_mean(it, end, p.get_n_elem() - p.get_n_nonzero(), typename T1::elem_type(0));
|
||
|
}
|
||
|
else // must_use_iterator == false; that is, we can directly access the values array
|
||
|
{
|
||
|
return spop_mean::direct_mean(p.get_values(), p.get_n_nonzero(), p.get_n_elem());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
template<typename T1, typename eT>
|
||
|
inline
|
||
|
eT
|
||
|
spop_mean::iterator_mean(T1& it, const T1& end, const uword n_zero, const eT junk)
|
||
|
{
|
||
|
arma_extra_debug_sigprint();
|
||
|
arma_ignore(junk);
|
||
|
|
||
|
typedef typename get_pod_type<eT>::result T;
|
||
|
|
||
|
eT acc = eT(0);
|
||
|
|
||
|
T1 backup_it(it); // in case we have to use robust iterator_mean
|
||
|
|
||
|
const uword it_begin_pos = it.pos();
|
||
|
|
||
|
while (it != end)
|
||
|
{
|
||
|
acc += (*it);
|
||
|
++it;
|
||
|
}
|
||
|
|
||
|
const uword count = n_zero + (it.pos() - it_begin_pos);
|
||
|
|
||
|
const eT result = (count > 0) ? eT(acc / T(count)) : eT(0);
|
||
|
|
||
|
return arma_isfinite(result) ? result : spop_mean::iterator_mean_robust(backup_it, end, n_zero, eT(0));
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
template<typename T1, typename eT>
|
||
|
inline
|
||
|
eT
|
||
|
spop_mean::iterator_mean_robust(T1& it, const T1& end, const uword n_zero, const eT junk)
|
||
|
{
|
||
|
arma_extra_debug_sigprint();
|
||
|
arma_ignore(junk);
|
||
|
|
||
|
typedef typename get_pod_type<eT>::result T;
|
||
|
|
||
|
eT r_mean = eT(0);
|
||
|
|
||
|
const uword it_begin_pos = it.pos();
|
||
|
|
||
|
while (it != end)
|
||
|
{
|
||
|
r_mean += ((*it - r_mean) / T(n_zero + (it.pos() - it_begin_pos) + 1));
|
||
|
++it;
|
||
|
}
|
||
|
|
||
|
return r_mean;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
//! @}
|