AnalysisSystemForRadionucli.../include/armadillo_bits/operator_schur.hpp

323 lines
7.5 KiB
C++
Raw Normal View History

2024-06-04 15:25:02 +08:00
// Copyright (C) 2008-2015 National ICT Australia (NICTA)
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
// -------------------------------------------------------------------
//
// Written by Conrad Sanderson - http://conradsanderson.id.au
// Written by Ryan Curtin
//! \addtogroup operator_schur
//! @{
// operator %, which we define it to do a schur product (element-wise multiplication)
//! element-wise multiplication of user-accessible Armadillo objects with same element type
template<typename T1, typename T2>
arma_inline
typename
enable_if2
<
is_arma_type<T1>::value && is_arma_type<T2>::value && is_same_type<typename T1::elem_type, typename T2::elem_type>::value,
const eGlue<T1, T2, eglue_schur>
>::result
operator%
(
const T1& X,
const T2& Y
)
{
arma_extra_debug_sigprint();
return eGlue<T1, T2, eglue_schur>(X, Y);
}
//! element-wise multiplication of user-accessible Armadillo objects with different element types
template<typename T1, typename T2>
inline
typename
enable_if2
<
(is_arma_type<T1>::value && is_arma_type<T2>::value && (is_same_type<typename T1::elem_type, typename T2::elem_type>::no)),
const mtGlue<typename promote_type<typename T1::elem_type, typename T2::elem_type>::result, T1, T2, glue_mixed_schur>
>::result
operator%
(
const T1& X,
const T2& Y
)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT1;
typedef typename T2::elem_type eT2;
typedef typename promote_type<eT1,eT2>::result out_eT;
promote_type<eT1,eT2>::check();
return mtGlue<out_eT, T1, T2, glue_mixed_schur>( X, Y );
}
//! element-wise multiplication of two sparse matrices
template<typename T1, typename T2>
inline
typename
enable_if2
<
(is_arma_sparse_type<T1>::value && is_arma_sparse_type<T2>::value && is_same_type<typename T1::elem_type, typename T2::elem_type>::value),
SpMat<typename T1::elem_type>
>::result
operator%
(
const SpBase<typename T1::elem_type, T1>& x,
const SpBase<typename T2::elem_type, T2>& y
)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT;
const SpProxy<T1> pa(x.get_ref());
const SpProxy<T2> pb(y.get_ref());
arma_debug_assert_same_size(pa.get_n_rows(), pa.get_n_cols(), pb.get_n_rows(), pb.get_n_cols(), "element-wise multiplication");
SpMat<typename T1::elem_type> result(pa.get_n_rows(), pa.get_n_cols());
if( (pa.get_n_nonzero() != 0) && (pb.get_n_nonzero() != 0) )
{
// Resize memory to correct size.
result.mem_resize(n_unique(x, y, op_n_unique_mul()));
// Now iterate across both matrices.
typename SpProxy<T1>::const_iterator_type x_it = pa.begin();
typename SpProxy<T2>::const_iterator_type y_it = pb.begin();
typename SpProxy<T1>::const_iterator_type x_end = pa.end();
typename SpProxy<T2>::const_iterator_type y_end = pb.end();
uword cur_val = 0;
while((x_it != x_end) || (y_it != y_end))
{
if(x_it == y_it)
{
const eT val = (*x_it) * (*y_it);
if (val != eT(0))
{
access::rw(result.values[cur_val]) = val;
access::rw(result.row_indices[cur_val]) = x_it.row();
++access::rw(result.col_ptrs[x_it.col() + 1]);
++cur_val;
}
++x_it;
++y_it;
}
else
{
const uword x_it_row = x_it.row();
const uword x_it_col = x_it.col();
const uword y_it_row = y_it.row();
const uword y_it_col = y_it.col();
if((x_it_col < y_it_col) || ((x_it_col == y_it_col) && (x_it_row < y_it_row))) // if y is closer to the end
{
++x_it;
}
else
{
++y_it;
}
}
}
// Fix column pointers to be cumulative.
for(uword c = 1; c <= result.n_cols; ++c)
{
access::rw(result.col_ptrs[c]) += result.col_ptrs[c - 1];
}
}
return result;
}
//! element-wise multiplication of one dense and one sparse object
template<typename T1, typename T2>
inline
typename
enable_if2
<
(is_arma_type<T1>::value && is_arma_sparse_type<T2>::value && is_same_type<typename T1::elem_type, typename T2::elem_type>::value),
SpMat<typename T1::elem_type>
>::result
operator%
(
const T1& x,
const T2& y
)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT;
const Proxy<T1> pa(x);
const SpProxy<T2> pb(y);
arma_debug_assert_same_size(pa.get_n_rows(), pa.get_n_cols(), pb.get_n_rows(), pb.get_n_cols(), "element-wise multiplication");
SpMat<eT> result(pa.get_n_rows(), pa.get_n_cols());
// count new size
uword new_n_nonzero = 0;
typename SpProxy<T2>::const_iterator_type it = pb.begin();
typename SpProxy<T2>::const_iterator_type it_end = pb.end();
while(it != it_end)
{
if( ((*it) * pa.at(it.row(), it.col())) != eT(0) )
{
++new_n_nonzero;
}
++it;
}
// Resize memory accordingly.
result.mem_resize(new_n_nonzero);
uword cur_val = 0;
typename SpProxy<T2>::const_iterator_type it2 = pb.begin();
while(it2 != it_end)
{
const uword it2_row = it2.row();
const uword it2_col = it2.col();
const eT val = (*it2) * pa.at(it2_row, it2_col);
if(val != eT(0))
{
access::rw(result.values[cur_val]) = val;
access::rw(result.row_indices[cur_val]) = it2_row;
++access::rw(result.col_ptrs[it2_col + 1]);
++cur_val;
}
++it2;
}
// Fix column pointers.
for(uword c = 1; c <= result.n_cols; ++c)
{
access::rw(result.col_ptrs[c]) += result.col_ptrs[c - 1];
}
return result;
}
//! element-wise multiplication of one sparse and one dense object
template<typename T1, typename T2>
inline
typename
enable_if2
<
(is_arma_sparse_type<T1>::value && is_arma_type<T2>::value && is_same_type<typename T1::elem_type, typename T2::elem_type>::value),
SpMat<typename T1::elem_type>
>::result
operator%
(
const T1& x,
const T2& y
)
{
arma_extra_debug_sigprint();
// This operation is commutative.
return (y % x);
}
template<typename parent, unsigned int mode, typename T2>
inline
Mat<typename parent::elem_type>
operator%
(
const subview_each1<parent,mode>& X,
const Base<typename parent::elem_type,T2>& Y
)
{
arma_extra_debug_sigprint();
return subview_each1_aux::operator_schur(X, Y.get_ref());
}
template<typename T1, typename parent, unsigned int mode>
arma_inline
Mat<typename parent::elem_type>
operator%
(
const Base<typename parent::elem_type,T1>& X,
const subview_each1<parent,mode>& Y
)
{
arma_extra_debug_sigprint();
return subview_each1_aux::operator_schur(Y, X.get_ref()); // NOTE: swapped order
}
template<typename parent, unsigned int mode, typename TB, typename T2>
inline
Mat<typename parent::elem_type>
operator%
(
const subview_each2<parent,mode,TB>& X,
const Base<typename parent::elem_type,T2>& Y
)
{
arma_extra_debug_sigprint();
return subview_each2_aux::operator_schur(X, Y.get_ref());
}
template<typename T1, typename parent, unsigned int mode, typename TB>
arma_inline
Mat<typename parent::elem_type>
operator%
(
const Base<typename parent::elem_type,T1>& X,
const subview_each2<parent,mode,TB>& Y
)
{
arma_extra_debug_sigprint();
return subview_each2_aux::operator_schur(Y, X.get_ref()); // NOTE: swapped order
}
//! @}