97 lines
2.4 KiB
C++
97 lines
2.4 KiB
C++
|
// Copyright (C) 2014-2015 National ICT Australia (NICTA)
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla Public
|
||
|
// License, v. 2.0. If a copy of the MPL was not distributed with this
|
||
|
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
// -------------------------------------------------------------------
|
||
|
//
|
||
|
// Written by Conrad Sanderson - http://conradsanderson.id.au
|
||
|
|
||
|
|
||
|
|
||
|
//! \addtogroup op_expmat
|
||
|
//! @{
|
||
|
|
||
|
|
||
|
//! implementation based on:
|
||
|
//! Cleve Moler, Charles Van Loan.
|
||
|
//! Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later.
|
||
|
//! SIAM Review, Vol. 45, No. 1, 2003, pp. 3-49.
|
||
|
//! http://dx.doi.org/10.1137/S00361445024180
|
||
|
|
||
|
|
||
|
template<typename T1>
|
||
|
inline
|
||
|
void
|
||
|
op_expmat::apply(Mat<typename T1::elem_type>& out, const Op<T1, op_expmat>& expr)
|
||
|
{
|
||
|
arma_extra_debug_sigprint();
|
||
|
|
||
|
typedef typename T1::elem_type eT;
|
||
|
typedef typename T1::pod_type T;
|
||
|
|
||
|
|
||
|
if(is_op_diagmat<T1>::value)
|
||
|
{
|
||
|
out = expr.m; // force the evaluation of diagmat()
|
||
|
|
||
|
arma_debug_check( (out.is_square() == false), "expmat(): given matrix must be square sized" );
|
||
|
|
||
|
const uword N = (std::min)(out.n_rows, out.n_cols);
|
||
|
|
||
|
for(uword i=0; i<N; ++i)
|
||
|
{
|
||
|
out.at(i,i) = std::exp( out.at(i,i) );
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
const unwrap<T1> tmp(expr.m);
|
||
|
const Mat<eT>& A = tmp.M;
|
||
|
|
||
|
arma_debug_check( (A.is_square() == false), "expmat(): given matrix must be square sized" );
|
||
|
|
||
|
const T norm_val = arma::norm(A, "inf");
|
||
|
|
||
|
const double log2_val = (norm_val > T(0)) ? double(eop_aux::log2(norm_val)) : double(0);
|
||
|
|
||
|
int exponent = int(0); std::frexp(log2_val, &exponent);
|
||
|
|
||
|
const uword s = uword( (std::max)(int(0), exponent + int(1)) );
|
||
|
|
||
|
const Mat<eT> AA = A / eT(eop_aux::pow(double(2), double(s)));
|
||
|
|
||
|
T c = T(0.5);
|
||
|
|
||
|
Mat<eT> E(AA.n_rows, AA.n_rows, fill::eye); E += c * AA;
|
||
|
Mat<eT> D(AA.n_rows, AA.n_rows, fill::eye); D -= c * AA;
|
||
|
|
||
|
Mat<eT> X = AA;
|
||
|
|
||
|
bool positive = true;
|
||
|
|
||
|
const uword N = 6;
|
||
|
|
||
|
for(uword i = 2; i <= N; ++i)
|
||
|
{
|
||
|
c = c * T(N - i + 1) / T(i * (2*N - i + 1));
|
||
|
|
||
|
X = AA * X;
|
||
|
|
||
|
E += c * X;
|
||
|
|
||
|
if(positive) { D += c * X; } else { D -= c * X; }
|
||
|
|
||
|
positive = (positive) ? false : true;
|
||
|
}
|
||
|
|
||
|
out = solve(D, E);
|
||
|
|
||
|
for(uword i=0; i < s; ++i) { out = out * out; }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
//! @}
|