115 lines
2.4 KiB
C++
115 lines
2.4 KiB
C++
|
// Copyright (C) 2012-2015 National ICT Australia (NICTA)
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla Public
|
||
|
// License, v. 2.0. If a copy of the MPL was not distributed with this
|
||
|
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
// -------------------------------------------------------------------
|
||
|
//
|
||
|
// Written by Conrad Sanderson - http://conradsanderson.id.au
|
||
|
|
||
|
|
||
|
//! \addtogroup fn_sprandn
|
||
|
//! @{
|
||
|
|
||
|
|
||
|
|
||
|
//! Generate a sparse matrix with a randomly selected subset of the elements
|
||
|
//! set to random values from a Gaussian distribution with zero mean and unit variance
|
||
|
template<typename obj_type>
|
||
|
inline
|
||
|
obj_type
|
||
|
sprandn
|
||
|
(
|
||
|
const uword n_rows,
|
||
|
const uword n_cols,
|
||
|
const double density,
|
||
|
const typename arma_SpMat_SpCol_SpRow_only<obj_type>::result* junk = 0
|
||
|
)
|
||
|
{
|
||
|
arma_extra_debug_sigprint();
|
||
|
arma_ignore(junk);
|
||
|
|
||
|
if(is_SpCol<obj_type>::value == true)
|
||
|
{
|
||
|
arma_debug_check( (n_cols != 1), "sprandn(): incompatible size" );
|
||
|
}
|
||
|
else
|
||
|
if(is_SpRow<obj_type>::value == true)
|
||
|
{
|
||
|
arma_debug_check( (n_rows != 1), "sprandn(): incompatible size" );
|
||
|
}
|
||
|
|
||
|
obj_type out;
|
||
|
|
||
|
out.sprandn(n_rows, n_cols, density);
|
||
|
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
template<typename obj_type>
|
||
|
inline
|
||
|
obj_type
|
||
|
sprandn(const SizeMat& s, const double density, const typename arma_SpMat_SpCol_SpRow_only<obj_type>::result* junk = 0)
|
||
|
{
|
||
|
arma_extra_debug_sigprint();
|
||
|
arma_ignore(junk);
|
||
|
|
||
|
return sprandn<obj_type>(s.n_rows, s.n_cols, density);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
inline
|
||
|
sp_mat
|
||
|
sprandn(const uword n_rows, const uword n_cols, const double density)
|
||
|
{
|
||
|
arma_extra_debug_sigprint();
|
||
|
|
||
|
sp_mat out;
|
||
|
|
||
|
out.sprandn(n_rows, n_cols, density);
|
||
|
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
inline
|
||
|
sp_mat
|
||
|
sprandn(const SizeMat& s, const double density)
|
||
|
{
|
||
|
arma_extra_debug_sigprint();
|
||
|
|
||
|
sp_mat out;
|
||
|
|
||
|
out.sprandn(s.n_rows, s.n_cols, density);
|
||
|
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
//! Generate a sparse matrix with the non-zero values in the same locations as in the given sparse matrix X,
|
||
|
//! with the non-zero values set to random values from a Gaussian distribution with zero mean and unit variance
|
||
|
template<typename T1>
|
||
|
inline
|
||
|
SpMat<typename T1::elem_type>
|
||
|
sprandn(const SpBase<typename T1::elem_type, T1>& X)
|
||
|
{
|
||
|
arma_extra_debug_sigprint();
|
||
|
|
||
|
typedef typename T1::elem_type eT;
|
||
|
|
||
|
SpMat<eT> out( X.get_ref() );
|
||
|
|
||
|
arma_rng::randn<eT>::fill( access::rwp(out.values), out.n_nonzero );
|
||
|
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
//! @}
|