AnalysisSystemForRadionucli.../include/armadillo_bits/spop_var_meat.hpp

408 lines
9.0 KiB
C++
Raw Normal View History

2024-06-04 15:25:02 +08:00
// Copyright (C) 2012-2015 National ICT Australia (NICTA)
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
// -------------------------------------------------------------------
//
// Written by Conrad Sanderson - http://conradsanderson.id.au
// Written by Ryan Curtin
//! \addtogroup spop_var
//! @{
template<typename T1>
inline
void
spop_var::apply(SpMat<typename T1::pod_type>& out, const mtSpOp<typename T1::pod_type, T1, spop_var>& in)
{
arma_extra_debug_sigprint();
//typedef typename T1::elem_type in_eT;
typedef typename T1::pod_type out_eT;
const uword norm_type = in.aux_uword_a;
const uword dim = in.aux_uword_b;
arma_debug_check( (norm_type > 1), "var(): parameter 'norm_type' must be 0 or 1" );
arma_debug_check( (dim > 1), "var(): parameter 'dim' must be 0 or 1" );
const SpProxy<T1> p(in.m);
if(p.is_alias(out) == false)
{
spop_var::apply_noalias(out, p, norm_type, dim);
}
else
{
SpMat<out_eT> tmp;
spop_var::apply_noalias(tmp, p, norm_type, dim);
out.steal_mem(tmp);
}
}
template<typename T1>
inline
void
spop_var::apply_noalias
(
SpMat<typename T1::pod_type>& out,
const SpProxy<T1>& p,
const uword norm_type,
const uword dim
)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type in_eT;
//typedef typename T1::pod_type out_eT;
const uword p_n_rows = p.get_n_rows();
const uword p_n_cols = p.get_n_cols();
// TODO: this is slow; rewrite based on the approach used by sparse mean()
if(dim == 0) // find variance in each column
{
arma_extra_debug_print("spop_var::apply_noalias(): dim = 0");
out.set_size((p_n_rows > 0) ? 1 : 0, p_n_cols);
if( (p_n_rows == 0) || (p.get_n_nonzero() == 0) ) { return; }
for(uword col = 0; col < p_n_cols; ++col)
{
if(SpProxy<T1>::must_use_iterator)
{
// We must use an iterator; we can't access memory directly.
typename SpProxy<T1>::const_iterator_type it = p.begin_col(col);
typename SpProxy<T1>::const_iterator_type end = p.begin_col(col + 1);
const uword n_zero = p_n_rows - (end.pos() - it.pos());
// in_eT is used just to get the specialization right (complex / noncomplex)
out.at(0, col) = spop_var::iterator_var(it, end, n_zero, norm_type, in_eT(0));
}
else
{
// We can use direct memory access to calculate the variance.
out.at(0, col) = spop_var::direct_var
(
&p.get_values()[p.get_col_ptrs()[col]],
p.get_col_ptrs()[col + 1] - p.get_col_ptrs()[col],
p_n_rows,
norm_type
);
}
}
}
else
if(dim == 1) // find variance in each row
{
arma_extra_debug_print("spop_var::apply_noalias(): dim = 1");
out.set_size(p_n_rows, (p_n_cols > 0) ? 1 : 0);
if( (p_n_cols == 0) || (p.get_n_nonzero() == 0) ) { return; }
for(uword row = 0; row < p_n_rows; ++row)
{
// We have to use an iterator here regardless of whether or not we can
// directly access memory.
typename SpProxy<T1>::const_row_iterator_type it = p.begin_row(row);
typename SpProxy<T1>::const_row_iterator_type end = p.end_row(row);
const uword n_zero = p_n_cols - (end.pos() - it.pos());
out.at(row, 0) = spop_var::iterator_var(it, end, n_zero, norm_type, in_eT(0));
}
}
}
template<typename T1>
inline
typename T1::pod_type
spop_var::var_vec
(
const T1& X,
const uword norm_type
)
{
arma_extra_debug_sigprint();
arma_debug_check( (norm_type > 1), "var(): parameter 'norm_type' must be 0 or 1" );
// conditionally unwrap it into a temporary and then directly operate.
const unwrap_spmat<T1> tmp(X);
return direct_var(tmp.M.values, tmp.M.n_nonzero, tmp.M.n_elem, norm_type);
}
template<typename eT>
inline
eT
spop_var::direct_var
(
const eT* const X,
const uword length,
const uword N,
const uword norm_type
)
{
arma_extra_debug_sigprint();
if(length >= 2 && N >= 2)
{
const eT acc1 = spop_mean::direct_mean(X, length, N);
eT acc2 = eT(0);
eT acc3 = eT(0);
uword i, j;
for(i = 0, j = 1; j < length; i += 2, j += 2)
{
const eT Xi = X[i];
const eT Xj = X[j];
const eT tmpi = acc1 - Xi;
const eT tmpj = acc1 - Xj;
acc2 += tmpi * tmpi + tmpj * tmpj;
acc3 += tmpi + tmpj;
}
if(i < length)
{
const eT Xi = X[i];
const eT tmpi = acc1 - Xi;
acc2 += tmpi * tmpi;
acc3 += tmpi;
}
// Now add in all zero elements.
acc2 += (N - length) * (acc1 * acc1);
acc3 += (N - length) * acc1;
const eT norm_val = (norm_type == 0) ? eT(N - 1) : eT(N);
const eT var_val = (acc2 - (acc3 * acc3) / eT(N)) / norm_val;
return var_val;
}
else if(length == 1 && N > 1) // if N == 1, then variance is zero.
{
const eT mean = X[0] / eT(N);
const eT val = mean - X[0];
const eT acc2 = (val * val) + (N - length) * (mean * mean);
const eT acc3 = val + (N - length) * mean;
const eT norm_val = (norm_type == 0) ? eT(N - 1) : eT(N);
const eT var_val = (acc2 - (acc3 * acc3) / eT(N)) / norm_val;
return var_val;
}
else
{
return eT(0);
}
}
template<typename T>
inline
T
spop_var::direct_var
(
const std::complex<T>* const X,
const uword length,
const uword N,
const uword norm_type
)
{
arma_extra_debug_sigprint();
typedef typename std::complex<T> eT;
if(length >= 2 && N >= 2)
{
const eT acc1 = spop_mean::direct_mean(X, length, N);
T acc2 = T(0);
eT acc3 = eT(0);
for (uword i = 0; i < length; ++i)
{
const eT tmp = acc1 - X[i];
acc2 += std::norm(tmp);
acc3 += tmp;
}
// Add zero elements to sums
acc2 += std::norm(acc1) * T(N - length);
acc3 += acc1 * T(N - length);
const T norm_val = (norm_type == 0) ? T(N - 1) : T(N);
const T var_val = (acc2 - std::norm(acc3) / T(N)) / norm_val;
return var_val;
}
else if(length == 1 && N > 1) // if N == 1, then variance is zero.
{
const eT mean = X[0] / T(N);
const eT val = mean - X[0];
const T acc2 = std::norm(val) + (N - length) * std::norm(mean);
const eT acc3 = val + T(N - length) * mean;
const T norm_val = (norm_type == 0) ? T(N - 1) : T(N);
const T var_val = (acc2 - std::norm(acc3) / T(N)) / norm_val;
return var_val;
}
else
{
return T(0); // All elements are zero
}
}
template<typename T1, typename eT>
inline
eT
spop_var::iterator_var
(
T1& it,
const T1& end,
const uword n_zero,
const uword norm_type,
const eT junk1,
const typename arma_not_cx<eT>::result* junk2
)
{
arma_extra_debug_sigprint();
arma_ignore(junk1);
arma_ignore(junk2);
T1 new_it(it); // for mean
// T1 backup_it(it); // in case we have to call robust iterator_var
eT mean = spop_mean::iterator_mean(new_it, end, n_zero, eT(0));
eT acc2 = eT(0);
eT acc3 = eT(0);
const uword it_begin_pos = it.pos();
while (it != end)
{
const eT tmp = mean - (*it);
acc2 += (tmp * tmp);
acc3 += (tmp);
++it;
}
const uword n_nonzero = (it.pos() - it_begin_pos);
if (n_nonzero == 0)
{
return eT(0);
}
if (n_nonzero + n_zero == 1)
{
return eT(0); // only one element
}
// Add in entries for zeros.
acc2 += eT(n_zero) * (mean * mean);
acc3 += eT(n_zero) * mean;
const eT norm_val = (norm_type == 0) ? eT(n_zero + n_nonzero - 1) : eT(n_zero + n_nonzero);
const eT var_val = (acc2 - (acc3 * acc3) / eT(n_nonzero + n_zero)) / norm_val;
return var_val;
}
template<typename T1, typename eT>
inline
typename get_pod_type<eT>::result
spop_var::iterator_var
(
T1& it,
const T1& end,
const uword n_zero,
const uword norm_type,
const eT junk1,
const typename arma_cx_only<eT>::result* junk2
)
{
arma_extra_debug_sigprint();
arma_ignore(junk1);
arma_ignore(junk2);
typedef typename get_pod_type<eT>::result T;
T1 new_it(it); // for mean
// T1 backup_it(it); // in case we have to call robust iterator_var
eT mean = spop_mean::iterator_mean(new_it, end, n_zero, eT(0));
T acc2 = T(0);
eT acc3 = eT(0);
const uword it_begin_pos = it.pos();
while (it != end)
{
eT tmp = mean - (*it);
acc2 += std::norm(tmp);
acc3 += (tmp);
++it;
}
const uword n_nonzero = (it.pos() - it_begin_pos);
if (n_nonzero == 0)
{
return T(0);
}
if (n_nonzero + n_zero == 1)
{
return T(0); // only one element
}
// Add in entries for zero elements.
acc2 += T(n_zero) * std::norm(mean);
acc3 += T(n_zero) * mean;
const T norm_val = (norm_type == 0) ? T(n_zero + n_nonzero - 1) : T(n_zero + n_nonzero);
const T var_val = (acc2 - std::norm(acc3) / T(n_nonzero + n_zero)) / norm_val;
return var_val;
}
//! @}