AnalysisSystemForRadionucli.../include/armadillo_bits/op_trimat_meat.hpp

246 lines
5.5 KiB
C++
Raw Normal View History

2024-06-04 15:25:02 +08:00
// Copyright (C) 2010-2012 National ICT Australia (NICTA)
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
// -------------------------------------------------------------------
//
// Written by Conrad Sanderson - http://conradsanderson.id.au
// Written by Ryan Curtin
//! \addtogroup op_trimat
//! @{
template<typename eT>
inline
void
op_trimat::fill_zeros(Mat<eT>& out, const bool upper)
{
arma_extra_debug_sigprint();
const uword N = out.n_rows;
if(upper)
{
// upper triangular: set all elements below the diagonal to zero
for(uword i=0; i<N; ++i)
{
eT* data = out.colptr(i);
arrayops::inplace_set( &data[i+1], eT(0), (N-(i+1)) );
}
}
else
{
// lower triangular: set all elements above the diagonal to zero
for(uword i=1; i<N; ++i)
{
eT* data = out.colptr(i);
arrayops::inplace_set( data, eT(0), i );
}
}
}
template<typename T1>
inline
void
op_trimat::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_trimat>& in)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT;
const unwrap<T1> tmp(in.m);
const Mat<eT>& A = tmp.M;
arma_debug_check( (A.is_square() == false), "trimatu()/trimatl(): given matrix must be square sized" );
const uword N = A.n_rows;
const bool upper = (in.aux_uword_a == 0);
if(&out != &A)
{
out.copy_size(A);
if(upper)
{
// upper triangular: copy the diagonal and the elements above the diagonal
for(uword i=0; i<N; ++i)
{
const eT* A_data = A.colptr(i);
eT* out_data = out.colptr(i);
arrayops::copy( out_data, A_data, i+1 );
}
}
else
{
// lower triangular: copy the diagonal and the elements below the diagonal
for(uword i=0; i<N; ++i)
{
const eT* A_data = A.colptr(i);
eT* out_data = out.colptr(i);
arrayops::copy( &out_data[i], &A_data[i], N-i );
}
}
}
op_trimat::fill_zeros(out, upper);
}
template<typename T1>
inline
void
op_trimat::apply(Mat<typename T1::elem_type>& out, const Op<Op<T1, op_htrans>, op_trimat>& in)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT;
const unwrap<T1> tmp(in.m.m);
const Mat<eT>& A = tmp.M;
const bool upper = (in.aux_uword_a == 0);
op_trimat::apply_htrans(out, A, upper);
}
template<typename eT>
inline
void
op_trimat::apply_htrans
(
Mat<eT>& out,
const Mat<eT>& A,
const bool upper,
const typename arma_not_cx<eT>::result* junk
)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
// This specialisation is for trimatl(trans(X)) = trans(trimatu(X)) and also
// trimatu(trans(X)) = trans(trimatl(X)). We want to avoid the creation of an
// extra temporary.
// It doesn't matter if the input and output matrices are the same; we will
// pull data from the upper or lower triangular to the lower or upper
// triangular (respectively) and then set the rest to 0, so overwriting issues
// aren't present.
arma_debug_check( (A.is_square() == false), "trimatu()/trimatl(): given matrix must be square sized" );
const uword N = A.n_rows;
if(&out != &A)
{
out.copy_size(A);
}
// We can't really get away with any array copy operations here,
// unfortunately...
if(upper)
{
// Upper triangular: but since we're transposing, we're taking the lower
// triangular and putting it in the upper half.
for(uword row = 0; row < N; ++row)
{
eT* out_colptr = out.colptr(row);
for(uword col = 0; col <= row; ++col)
{
//out.at(col, row) = A.at(row, col);
out_colptr[col] = A.at(row, col);
}
}
}
else
{
// Lower triangular: but since we're transposing, we're taking the upper
// triangular and putting it in the lower half.
for(uword row = 0; row < N; ++row)
{
for(uword col = row; col < N; ++col)
{
out.at(col, row) = A.at(row, col);
}
}
}
op_trimat::fill_zeros(out, upper);
}
template<typename eT>
inline
void
op_trimat::apply_htrans
(
Mat<eT>& out,
const Mat<eT>& A,
const bool upper,
const typename arma_cx_only<eT>::result* junk
)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
arma_debug_check( (A.is_square() == false), "trimatu()/trimatl(): given matrix must be square sized" );
const uword N = A.n_rows;
if(&out != &A)
{
out.copy_size(A);
}
if(upper)
{
// Upper triangular: but since we're transposing, we're taking the lower
// triangular and putting it in the upper half.
for(uword row = 0; row < N; ++row)
{
eT* out_colptr = out.colptr(row);
for(uword col = 0; col <= row; ++col)
{
//out.at(col, row) = std::conj( A.at(row, col) );
out_colptr[col] = std::conj( A.at(row, col) );
}
}
}
else
{
// Lower triangular: but since we're transposing, we're taking the upper
// triangular and putting it in the lower half.
for(uword row = 0; row < N; ++row)
{
for(uword col = row; col < N; ++col)
{
out.at(col, row) = std::conj( A.at(row, col) );
}
}
}
op_trimat::fill_zeros(out, upper);
}
//! @}