AnalysisSystemForRadionucli.../include/armadillo_bits/mul_herk.hpp

486 lines
13 KiB
C++
Raw Normal View History

2024-06-04 15:25:02 +08:00
// Copyright (C) 2013 National ICT Australia (NICTA)
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
// -------------------------------------------------------------------
//
// Written by Conrad Sanderson - http://conradsanderson.id.au
//! \addtogroup herk
//! @{
class herk_helper
{
public:
template<typename eT>
inline
static
void
inplace_conj_copy_upper_tri_to_lower_tri(Mat<eT>& C)
{
// under the assumption that C is a square matrix
const uword N = C.n_rows;
for(uword k=0; k < N; ++k)
{
eT* colmem = C.colptr(k);
for(uword i=(k+1); i < N; ++i)
{
colmem[i] = std::conj( C.at(k,i) );
}
}
}
template<typename eT>
static
arma_hot
arma_pure
inline
eT
dot_conj_row(const uword n_elem, const eT* const A, const Mat<eT>& B, const uword row)
{
arma_extra_debug_sigprint();
typedef typename get_pod_type<eT>::result T;
T val_real = T(0);
T val_imag = T(0);
for(uword i=0; i<n_elem; ++i)
{
const std::complex<T>& X = A[i];
const std::complex<T>& Y = B.at(row,i);
const T a = X.real();
const T b = X.imag();
const T c = Y.real();
const T d = Y.imag();
val_real += (a*c) + (b*d);
val_imag += (b*c) - (a*d);
}
return std::complex<T>(val_real, val_imag);
}
};
template<const bool do_trans_A=false, const bool use_alpha=false, const bool use_beta=false>
class herk_vec
{
public:
template<typename T, typename TA>
arma_hot
inline
static
void
apply
(
Mat< std::complex<T> >& C,
const TA& A,
const T alpha = T(1),
const T beta = T(0)
)
{
arma_extra_debug_sigprint();
typedef std::complex<T> eT;
const uword A_n_rows = A.n_rows;
const uword A_n_cols = A.n_cols;
// for beta != 0, C is assumed to be hermitian
// do_trans_A == false -> C = alpha * A * A^H + beta*C
// do_trans_A == true -> C = alpha * A^H * A + beta*C
const eT* A_mem = A.memptr();
if(do_trans_A == false)
{
if(A_n_rows == 1)
{
const eT acc = op_cdot::direct_cdot(A_n_cols, A_mem, A_mem);
if( (use_alpha == false) && (use_beta == false) ) { C[0] = acc; }
else if( (use_alpha == true ) && (use_beta == false) ) { C[0] = alpha*acc; }
else if( (use_alpha == false) && (use_beta == true ) ) { C[0] = acc + beta*C[0]; }
else if( (use_alpha == true ) && (use_beta == true ) ) { C[0] = alpha*acc + beta*C[0]; }
}
else
for(uword row_A=0; row_A < A_n_rows; ++row_A)
{
const eT& A_rowdata = A_mem[row_A];
for(uword k=row_A; k < A_n_rows; ++k)
{
const eT acc = A_rowdata * std::conj( A_mem[k] );
if( (use_alpha == false) && (use_beta == false) )
{
C.at(row_A, k) = acc;
if(row_A != k) { C.at(k, row_A) = std::conj(acc); }
}
else
if( (use_alpha == true) && (use_beta == false) )
{
const eT val = alpha*acc;
C.at(row_A, k) = val;
if(row_A != k) { C.at(k, row_A) = std::conj(val); }
}
else
if( (use_alpha == false) && (use_beta == true) )
{
C.at(row_A, k) = acc + beta*C.at(row_A, k);
if(row_A != k) { C.at(k, row_A) = std::conj(acc) + beta*C.at(k, row_A); }
}
else
if( (use_alpha == true) && (use_beta == true) )
{
const eT val = alpha*acc;
C.at(row_A, k) = val + beta*C.at(row_A, k);
if(row_A != k) { C.at(k, row_A) = std::conj(val) + beta*C.at(k, row_A); }
}
}
}
}
else
if(do_trans_A == true)
{
if(A_n_cols == 1)
{
const eT acc = op_cdot::direct_cdot(A_n_rows, A_mem, A_mem);
if( (use_alpha == false) && (use_beta == false) ) { C[0] = acc; }
else if( (use_alpha == true ) && (use_beta == false) ) { C[0] = alpha*acc; }
else if( (use_alpha == false) && (use_beta == true ) ) { C[0] = acc + beta*C[0]; }
else if( (use_alpha == true ) && (use_beta == true ) ) { C[0] = alpha*acc + beta*C[0]; }
}
else
for(uword col_A=0; col_A < A_n_cols; ++col_A)
{
// col_A is interpreted as row_A when storing the results in matrix C
const eT A_coldata = std::conj( A_mem[col_A] );
for(uword k=col_A; k < A_n_cols ; ++k)
{
const eT acc = A_coldata * A_mem[k];
if( (use_alpha == false) && (use_beta == false) )
{
C.at(col_A, k) = acc;
if(col_A != k) { C.at(k, col_A) = std::conj(acc); }
}
else
if( (use_alpha == true ) && (use_beta == false) )
{
const eT val = alpha*acc;
C.at(col_A, k) = val;
if(col_A != k) { C.at(k, col_A) = std::conj(val); }
}
else
if( (use_alpha == false) && (use_beta == true ) )
{
C.at(col_A, k) = acc + beta*C.at(col_A, k);
if(col_A != k) { C.at(k, col_A) = std::conj(acc) + beta*C.at(k, col_A); }
}
else
if( (use_alpha == true ) && (use_beta == true ) )
{
const eT val = alpha*acc;
C.at(col_A, k) = val + beta*C.at(col_A, k);
if(col_A != k) { C.at(k, col_A) = std::conj(val) + beta*C.at(k, col_A); }
}
}
}
}
}
};
template<const bool do_trans_A=false, const bool use_alpha=false, const bool use_beta=false>
class herk_emul
{
public:
template<typename T, typename TA>
arma_hot
inline
static
void
apply
(
Mat< std::complex<T> >& C,
const TA& A,
const T alpha = T(1),
const T beta = T(0)
)
{
arma_extra_debug_sigprint();
typedef std::complex<T> eT;
// do_trans_A == false -> C = alpha * A * A^H + beta*C
// do_trans_A == true -> C = alpha * A^H * A + beta*C
if(do_trans_A == false)
{
Mat<eT> AA;
op_htrans::apply_mat_noalias(AA, A);
herk_emul<true, use_alpha, use_beta>::apply(C, AA, alpha, beta);
}
else
if(do_trans_A == true)
{
const uword A_n_rows = A.n_rows;
const uword A_n_cols = A.n_cols;
for(uword col_A=0; col_A < A_n_cols; ++col_A)
{
// col_A is interpreted as row_A when storing the results in matrix C
const eT* A_coldata = A.colptr(col_A);
for(uword k=col_A; k < A_n_cols ; ++k)
{
const eT acc = op_cdot::direct_cdot(A_n_rows, A_coldata, A.colptr(k));
if( (use_alpha == false) && (use_beta == false) )
{
C.at(col_A, k) = acc;
if(col_A != k) { C.at(k, col_A) = std::conj(acc); }
}
else
if( (use_alpha == true) && (use_beta == false) )
{
const eT val = alpha*acc;
C.at(col_A, k) = val;
if(col_A != k) { C.at(k, col_A) = std::conj(val); }
}
else
if( (use_alpha == false) && (use_beta == true) )
{
C.at(col_A, k) = acc + beta*C.at(col_A, k);
if(col_A != k) { C.at(k, col_A) = std::conj(acc) + beta*C.at(k, col_A); }
}
else
if( (use_alpha == true) && (use_beta == true) )
{
const eT val = alpha*acc;
C.at(col_A, k) = val + beta*C.at(col_A, k);
if(col_A != k) { C.at(k, col_A) = std::conj(val) + beta*C.at(k, col_A); }
}
}
}
}
}
};
template<const bool do_trans_A=false, const bool use_alpha=false, const bool use_beta=false>
class herk
{
public:
template<typename T, typename TA>
inline
static
void
apply_blas_type( Mat<std::complex<T> >& C, const TA& A, const T alpha = T(1), const T beta = T(0) )
{
arma_extra_debug_sigprint();
const uword threshold = 16;
if(A.is_vec())
{
// work around poor handling of vectors by herk() in ATLAS 3.8.4 and standard BLAS
herk_vec<do_trans_A, use_alpha, use_beta>::apply(C,A,alpha,beta);
return;
}
if( (A.n_elem <= threshold) )
{
herk_emul<do_trans_A, use_alpha, use_beta>::apply(C,A,alpha,beta);
}
else
{
#if defined(ARMA_USE_ATLAS)
{
if(use_beta == true)
{
typedef typename std::complex<T> eT;
// use a temporary matrix, as we can't assume that matrix C is already symmetric
Mat<eT> D(C.n_rows, C.n_cols);
herk<do_trans_A, use_alpha, false>::apply_blas_type(D,A,alpha);
// NOTE: assuming beta=1; this is okay for now, as currently glue_times only uses beta=1
arrayops::inplace_plus(C.memptr(), D.memptr(), C.n_elem);
return;
}
atlas::cblas_herk<T>
(
atlas::CblasColMajor,
atlas::CblasUpper,
(do_trans_A) ? CblasConjTrans : atlas::CblasNoTrans,
C.n_cols,
(do_trans_A) ? A.n_rows : A.n_cols,
(use_alpha) ? alpha : T(1),
A.mem,
(do_trans_A) ? A.n_rows : C.n_cols,
(use_beta) ? beta : T(0),
C.memptr(),
C.n_cols
);
herk_helper::inplace_conj_copy_upper_tri_to_lower_tri(C);
}
#elif defined(ARMA_USE_BLAS)
{
if(use_beta == true)
{
typedef typename std::complex<T> eT;
// use a temporary matrix, as we can't assume that matrix C is already symmetric
Mat<eT> D(C.n_rows, C.n_cols);
herk<do_trans_A, use_alpha, false>::apply_blas_type(D,A,alpha);
// NOTE: assuming beta=1; this is okay for now, as currently glue_times only uses beta=1
arrayops::inplace_plus(C.memptr(), D.memptr(), C.n_elem);
return;
}
arma_extra_debug_print("blas::herk()");
const char uplo = 'U';
const char trans_A = (do_trans_A) ? 'C' : 'N';
const blas_int n = blas_int(C.n_cols);
const blas_int k = (do_trans_A) ? blas_int(A.n_rows) : blas_int(A.n_cols);
const T local_alpha = (use_alpha) ? alpha : T(1);
const T local_beta = (use_beta) ? beta : T(0);
const blas_int lda = (do_trans_A) ? k : n;
arma_extra_debug_print( arma_boost::format("blas::herk(): trans_A = %c") % trans_A );
blas::herk<T>
(
&uplo,
&trans_A,
&n,
&k,
&local_alpha,
A.mem,
&lda,
&local_beta,
C.memptr(),
&n // &ldc
);
herk_helper::inplace_conj_copy_upper_tri_to_lower_tri(C);
}
#else
{
herk_emul<do_trans_A, use_alpha, use_beta>::apply(C,A,alpha,beta);
}
#endif
}
}
template<typename eT, typename TA>
inline
static
void
apply( Mat<eT>& C, const TA& A, const eT alpha = eT(1), const eT beta = eT(0), const typename arma_not_cx<eT>::result* junk = 0 )
{
arma_ignore(C);
arma_ignore(A);
arma_ignore(alpha);
arma_ignore(beta);
arma_ignore(junk);
// herk() cannot be used by non-complex matrices
return;
}
template<typename TA>
arma_inline
static
void
apply
(
Mat< std::complex<float> >& C,
const TA& A,
const float alpha = float(1),
const float beta = float(0)
)
{
herk<do_trans_A, use_alpha, use_beta>::apply_blas_type(C,A,alpha,beta);
}
template<typename TA>
arma_inline
static
void
apply
(
Mat< std::complex<double> >& C,
const TA& A,
const double alpha = double(1),
const double beta = double(0)
)
{
herk<do_trans_A, use_alpha, use_beta>::apply_blas_type(C,A,alpha,beta);
}
};
//! @}