AnalysisSystemForRadionucli.../include/armadillo_bits/fn_princomp.hpp

173 lines
4.0 KiB
C++
Raw Normal View History

2024-06-04 15:25:02 +08:00
// Copyright (C) 2010-2012 National ICT Australia (NICTA)
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
// -------------------------------------------------------------------
//
// Written by Conrad Sanderson - http://conradsanderson.id.au
// Written by Dimitrios Bouzas
//! \addtogroup fn_princomp
//! @{
//! \brief
//! principal component analysis -- 4 arguments version
//! coeff_out -> principal component coefficients
//! score_out -> projected samples
//! latent_out -> eigenvalues of principal vectors
//! tsquared_out -> Hotelling's T^2 statistic
template<typename T1>
inline
bool
princomp
(
Mat<typename T1::elem_type>& coeff_out,
Mat<typename T1::elem_type>& score_out,
Col<typename T1::pod_type>& latent_out,
Col<typename T1::elem_type>& tsquared_out,
const Base<typename T1::elem_type,T1>& X,
const typename arma_blas_type_only<typename T1::elem_type>::result* junk = 0
)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
const bool status = op_princomp::direct_princomp(coeff_out, score_out, latent_out, tsquared_out, X);
if(status == false)
{
coeff_out.reset();
score_out.reset();
latent_out.reset();
tsquared_out.reset();
arma_debug_warn("princomp(): decomposition failed");
}
return status;
}
//! \brief
//! principal component analysis -- 3 arguments version
//! coeff_out -> principal component coefficients
//! score_out -> projected samples
//! latent_out -> eigenvalues of principal vectors
template<typename T1>
inline
bool
princomp
(
Mat<typename T1::elem_type>& coeff_out,
Mat<typename T1::elem_type>& score_out,
Col<typename T1::pod_type>& latent_out,
const Base<typename T1::elem_type,T1>& X,
const typename arma_blas_type_only<typename T1::elem_type>::result* junk = 0
)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
const bool status = op_princomp::direct_princomp(coeff_out, score_out, latent_out, X);
if(status == false)
{
coeff_out.reset();
score_out.reset();
latent_out.reset();
arma_debug_warn("princomp(): decomposition failed");
}
return status;
}
//! \brief
//! principal component analysis -- 2 arguments version
//! coeff_out -> principal component coefficients
//! score_out -> projected samples
template<typename T1>
inline
bool
princomp
(
Mat<typename T1::elem_type>& coeff_out,
Mat<typename T1::elem_type>& score_out,
const Base<typename T1::elem_type,T1>& X,
const typename arma_blas_type_only<typename T1::elem_type>::result* junk = 0
)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
const bool status = op_princomp::direct_princomp(coeff_out, score_out, X);
if(status == false)
{
coeff_out.reset();
score_out.reset();
arma_debug_warn("princomp(): decomposition failed");
}
return status;
}
//! \brief
//! principal component analysis -- 1 argument version
//! coeff_out -> principal component coefficients
template<typename T1>
inline
bool
princomp
(
Mat<typename T1::elem_type>& coeff_out,
const Base<typename T1::elem_type,T1>& X,
const typename arma_blas_type_only<typename T1::elem_type>::result* junk = 0
)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
const bool status = op_princomp::direct_princomp(coeff_out, X);
if(status == false)
{
coeff_out.reset();
arma_debug_warn("princomp(): decomposition failed");
}
return status;
}
template<typename T1>
inline
const Op<T1, op_princomp>
princomp
(
const Base<typename T1::elem_type,T1>& X,
const typename arma_blas_type_only<typename T1::elem_type>::result* junk = 0
)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
return Op<T1, op_princomp>(X.get_ref());
}
//! @}