AnalysisSystemForRadionucli.../include/armadillo_bits/auxlib_bones.hpp

285 lines
10 KiB
C++
Raw Normal View History

2024-06-04 15:25:02 +08:00
// Copyright (C) 2008-2015 National ICT Australia (NICTA)
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
// -------------------------------------------------------------------
//
// Written by Conrad Sanderson - http://conradsanderson.id.au
// Written by James Sanders
// Written by Eric Jon Sundstrom
//! \addtogroup auxlib
//! @{
//! interface functions for accessing decompositions in LAPACK and ATLAS
class auxlib
{
public:
template<const uword row, const uword col>
struct pos
{
static const uword n2 = row + col*2;
static const uword n3 = row + col*3;
static const uword n4 = row + col*4;
};
//
// inv
template<typename eT, typename T1>
inline static bool inv(Mat<eT>& out, const Base<eT,T1>& X);
template<typename eT>
inline static bool inv(Mat<eT>& out, const Mat<eT>& A);
template<typename eT>
inline static bool inv_noalias_tinymat(Mat<eT>& out, const Mat<eT>& X, const uword N);
template<typename eT>
inline static bool inv_inplace_lapack(Mat<eT>& out);
//
// inv_tr
template<typename eT, typename T1>
inline static bool inv_tr(Mat<eT>& out, const Base<eT,T1>& X, const uword layout);
//
// inv_sym
template<typename eT, typename T1>
inline static bool inv_sym(Mat<eT>& out, const Base<eT,T1>& X, const uword layout);
//
// inv_sympd
template<typename eT, typename T1>
inline static bool inv_sympd(Mat<eT>& out, const Base<eT,T1>& X, const uword layout);
//
// det
template<typename eT, typename T1>
inline static eT det(const Base<eT,T1>& X);
template<typename eT>
inline static eT det_tinymat(const Mat<eT>& X, const uword N);
template<typename eT>
inline static eT det_lapack(const Mat<eT>& X, const bool make_copy);
//
// log_det
template<typename eT, typename T1>
inline static bool log_det(eT& out_val, typename get_pod_type<eT>::result& out_sign, const Base<eT,T1>& X);
//
// lu
template<typename eT, typename T1>
inline static bool lu(Mat<eT>& L, Mat<eT>& U, podarray<blas_int>& ipiv, const Base<eT,T1>& X);
template<typename eT, typename T1>
inline static bool lu(Mat<eT>& L, Mat<eT>& U, Mat<eT>& P, const Base<eT,T1>& X);
template<typename eT, typename T1>
inline static bool lu(Mat<eT>& L, Mat<eT>& U, const Base<eT,T1>& X);
//
// eig_gen
template<typename T1>
inline static bool eig_gen(Mat< std::complex<typename T1::pod_type> >& vals, Mat< std::complex<typename T1::pod_type> >& vecs, const uword mode, const Base<typename T1::pod_type,T1>& expr);
template<typename T1>
inline static bool eig_gen(Mat< std::complex<typename T1::pod_type> >& vals, Mat< std::complex<typename T1::pod_type> >& vecs, const uword mode, const Base< std::complex<typename T1::pod_type>, T1 >& expr);
template<typename T1>
inline static bool eig_gen_dual(Mat< std::complex<typename T1::pod_type> >& vals, Mat<typename T1::pod_type>& vecs_l, Mat<typename T1::pod_type>& vecs_r, const Base<typename T1::pod_type,T1>& expr);
template<typename T1>
inline static bool eig_gen_dual(Mat< std::complex<typename T1::pod_type> >& vals, Mat< std::complex<typename T1::pod_type> >& vecs_l, Mat< std::complex<typename T1::pod_type> >& vecs_r, const Base< std::complex<typename T1::pod_type>, T1 >& expr);
//
// eig_pair
template<typename T1, typename T2>
inline static bool eig_pair(Mat< std::complex<typename T1::pod_type> >& vals, Mat< std::complex<typename T1::pod_type> >& vecs, const uword mode, const Base<typename T1::pod_type,T1>& A_expr, const Base<typename T1::pod_type,T2>& B_expr);
template<typename T1, typename T2>
inline static bool eig_pair(Mat< std::complex<typename T1::pod_type> >& vals, Mat< std::complex<typename T1::pod_type> >& vecs, const uword mode, const Base< std::complex<typename T1::pod_type>, T1 >& A_expr, const Base< std::complex<typename T1::pod_type>, T2 >& B_expr);
//
// eig_sym
template<typename eT, typename T1>
inline static bool eig_sym(Col<eT>& eigval, const Base<eT,T1>& X);
template<typename T, typename T1>
inline static bool eig_sym(Col<T>& eigval, const Base<std::complex<T>,T1>& X);
template<typename eT, typename T1>
inline static bool eig_sym(Col<eT>& eigval, Mat<eT>& eigvec, const Base<eT,T1>& X);
template<typename T, typename T1>
inline static bool eig_sym(Col<T>& eigval, Mat< std::complex<T> >& eigvec, const Base<std::complex<T>,T1>& X);
template<typename eT, typename T1>
inline static bool eig_sym_dc(Col<eT>& eigval, Mat<eT>& eigvec, const Base<eT,T1>& X);
template<typename T, typename T1>
inline static bool eig_sym_dc(Col<T>& eigval, Mat< std::complex<T> >& eigvec, const Base<std::complex<T>,T1>& X);
//
// chol
template<typename eT, typename T1>
inline static bool chol(Mat<eT>& out, const Base<eT,T1>& X, const uword layout);
//
// qr
template<typename eT, typename T1>
inline static bool qr(Mat<eT>& Q, Mat<eT>& R, const Base<eT,T1>& X);
template<typename eT, typename T1>
inline static bool qr_econ(Mat<eT>& Q, Mat<eT>& R, const Base<eT,T1>& X);
//
// svd
template<typename eT, typename T1>
inline static bool svd(Col<eT>& S, const Base<eT,T1>& X, uword& n_rows, uword& n_cols);
template<typename T, typename T1>
inline static bool svd(Col<T>& S, const Base<std::complex<T>, T1>& X, uword& n_rows, uword& n_cols);
template<typename eT, typename T1>
inline static bool svd(Col<eT>& S, const Base<eT,T1>& X);
template<typename T, typename T1>
inline static bool svd(Col<T>& S, const Base<std::complex<T>, T1>& X);
template<typename eT, typename T1>
inline static bool svd(Mat<eT>& U, Col<eT>& S, Mat<eT>& V, const Base<eT,T1>& X);
template<typename T, typename T1>
inline static bool svd(Mat< std::complex<T> >& U, Col<T>& S, Mat< std::complex<T> >& V, const Base< std::complex<T>, T1>& X);
template<typename eT, typename T1>
inline static bool svd_econ(Mat<eT>& U, Col<eT>& S, Mat<eT>& V, const Base<eT,T1>& X, const char mode);
template<typename T, typename T1>
inline static bool svd_econ(Mat< std::complex<T> >& U, Col<T>& S, Mat< std::complex<T> >& V, const Base< std::complex<T>, T1>& X, const char mode);
template<typename eT, typename T1>
inline static bool svd_dc(Col<eT>& S, const Base<eT,T1>& X, uword& n_rows, uword& n_cols);
template<typename T, typename T1>
inline static bool svd_dc(Col<T>& S, const Base<std::complex<T>, T1>& X, uword& n_rows, uword& n_cols);
template<typename eT, typename T1>
inline static bool svd_dc(Col<eT>& S, const Base<eT,T1>& X);
template<typename T, typename T1>
inline static bool svd_dc(Col<T>& S, const Base<std::complex<T>, T1>& X);
template<typename eT, typename T1>
inline static bool svd_dc(Mat<eT>& U, Col<eT>& S, Mat<eT>& V, const Base<eT,T1>& X);
template<typename T, typename T1>
inline static bool svd_dc(Mat< std::complex<T> >& U, Col<T>& S, Mat< std::complex<T> >& V, const Base< std::complex<T>, T1>& X);
template<typename eT, typename T1>
inline static bool svd_dc_econ(Mat<eT>& U, Col<eT>& S, Mat<eT>& V, const Base<eT,T1>& X);
template<typename T, typename T1>
inline static bool svd_dc_econ(Mat< std::complex<T> >& U, Col<T>& S, Mat< std::complex<T> >& V, const Base< std::complex<T>, T1>& X);
//
// solve
template<typename T1>
inline static bool solve_square_fast(Mat<typename T1::elem_type>& out, Mat<typename T1::elem_type>& A, const Base<typename T1::elem_type,T1>& B_expr);
template<typename T1>
inline static bool solve_square_refine(Mat<typename T1::pod_type>& out, typename T1::pod_type& out_rcond, Mat<typename T1::pod_type>& A, const Base<typename T1::pod_type,T1>& B_expr, const bool equilibrate);
template<typename T1>
inline static bool solve_square_refine(Mat< std::complex<typename T1::pod_type> >& out, typename T1::pod_type& out_rcond, Mat< std::complex<typename T1::pod_type> >& A, const Base<std::complex<typename T1::pod_type>,T1>& B_expr, const bool equilibrate);
template<typename T1>
inline static bool solve_approx_fast(Mat<typename T1::elem_type>& out, Mat<typename T1::elem_type>& A, const Base<typename T1::elem_type,T1>& B_expr);
template<typename T1>
inline static bool solve_approx_svd(Mat<typename T1::pod_type>& out, Mat<typename T1::pod_type>& A, const Base<typename T1::pod_type,T1>& B_expr);
template<typename T1>
inline static bool solve_approx_svd(Mat< std::complex<typename T1::pod_type> >& out, Mat< std::complex<typename T1::pod_type> >& A, const Base<std::complex<typename T1::pod_type>,T1>& B_expr);
template<typename T1>
inline static bool solve_tri(Mat<typename T1::elem_type>& out, const Mat<typename T1::elem_type>& A, const Base<typename T1::elem_type,T1>& B_expr, const uword layout);
//
// Schur decomposition
template<typename eT, typename T1>
inline static bool schur(Mat<eT>& U, Mat<eT>& S, const Base<eT,T1>& X, const bool calc_U = true);
template<typename T, typename T1>
inline static bool schur(Mat<std::complex<T> >& U, Mat<std::complex<T> >& S, const Base<std::complex<T>,T1>& X, const bool calc_U = true);
//
// syl (solution of the Sylvester equation AX + XB = C)
template<typename eT>
inline static bool syl(Mat<eT>& X, const Mat<eT>& A, const Mat<eT>& B, const Mat<eT>& C);
//
// QZ decomposition
template<typename T, typename T1, typename T2>
inline static bool qz(Mat<T>& A, Mat<T>& B, Mat<T>& vsl, Mat<T>& vsr, const Base<T,T1>& X_expr, const Base<T,T2>& Y_expr);
template<typename T, typename T1, typename T2>
inline static bool qz(Mat< std::complex<T> >& A, Mat< std::complex<T> >& B, Mat< std::complex<T> >& vsl, Mat< std::complex<T> >& vsr, const Base< std::complex<T>, T1 >& X_expr, const Base< std::complex<T>, T2 >& Y_expr);
//
// rcond
template<typename T1>
inline static typename T1::pod_type rcond(const Base<typename T1::pod_type,T1>& A_expr);
template<typename T1>
inline static typename T1::pod_type rcond(const Base<std::complex<typename T1::pod_type>,T1>& A_expr);
};
//! @}