NuclearDispersionSystem/ant-design-vue-jeecg/node_modules/fmin/build/fmin.js
2023-09-14 14:47:11 +08:00

425 lines
14 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
typeof define === 'function' && define.amd ? define(['exports'], factory) :
(factory((global.fmin = global.fmin || {})));
}(this, function (exports) { 'use strict';
/** finds the zeros of a function, given two starting points (which must
* have opposite signs */
function bisect(f, a, b, parameters) {
parameters = parameters || {};
var maxIterations = parameters.maxIterations || 100,
tolerance = parameters.tolerance || 1e-10,
fA = f(a),
fB = f(b),
delta = b - a;
if (fA * fB > 0) {
throw "Initial bisect points must have opposite signs";
}
if (fA === 0) return a;
if (fB === 0) return b;
for (var i = 0; i < maxIterations; ++i) {
delta /= 2;
var mid = a + delta,
fMid = f(mid);
if (fMid * fA >= 0) {
a = mid;
}
if ((Math.abs(delta) < tolerance) || (fMid === 0)) {
return mid;
}
}
return a + delta;
}
// need some basic operations on vectors, rather than adding a dependency,
// just define here
function zeros(x) { var r = new Array(x); for (var i = 0; i < x; ++i) { r[i] = 0; } return r; }
function zerosM(x,y) { return zeros(x).map(function() { return zeros(y); }); }
function dot(a, b) {
var ret = 0;
for (var i = 0; i < a.length; ++i) {
ret += a[i] * b[i];
}
return ret;
}
function norm2(a) {
return Math.sqrt(dot(a, a));
}
function scale(ret, value, c) {
for (var i = 0; i < value.length; ++i) {
ret[i] = value[i] * c;
}
}
function weightedSum(ret, w1, v1, w2, v2) {
for (var j = 0; j < ret.length; ++j) {
ret[j] = w1 * v1[j] + w2 * v2[j];
}
}
/** minimizes a function using the downhill simplex method */
function nelderMead(f, x0, parameters) {
parameters = parameters || {};
var maxIterations = parameters.maxIterations || x0.length * 200,
nonZeroDelta = parameters.nonZeroDelta || 1.05,
zeroDelta = parameters.zeroDelta || 0.001,
minErrorDelta = parameters.minErrorDelta || 1e-6,
minTolerance = parameters.minErrorDelta || 1e-5,
rho = (parameters.rho !== undefined) ? parameters.rho : 1,
chi = (parameters.chi !== undefined) ? parameters.chi : 2,
psi = (parameters.psi !== undefined) ? parameters.psi : -0.5,
sigma = (parameters.sigma !== undefined) ? parameters.sigma : 0.5,
maxDiff;
// initialize simplex.
var N = x0.length,
simplex = new Array(N + 1);
simplex[0] = x0;
simplex[0].fx = f(x0);
simplex[0].id = 0;
for (var i = 0; i < N; ++i) {
var point = x0.slice();
point[i] = point[i] ? point[i] * nonZeroDelta : zeroDelta;
simplex[i+1] = point;
simplex[i+1].fx = f(point);
simplex[i+1].id = i+1;
}
function updateSimplex(value) {
for (var i = 0; i < value.length; i++) {
simplex[N][i] = value[i];
}
simplex[N].fx = value.fx;
}
var sortOrder = function(a, b) { return a.fx - b.fx; };
var centroid = x0.slice(),
reflected = x0.slice(),
contracted = x0.slice(),
expanded = x0.slice();
for (var iteration = 0; iteration < maxIterations; ++iteration) {
simplex.sort(sortOrder);
if (parameters.history) {
// copy the simplex (since later iterations will mutate) and
// sort it to have a consistent order between iterations
var sortedSimplex = simplex.map(function (x) {
var state = x.slice();
state.fx = x.fx;
state.id = x.id;
return state;
});
sortedSimplex.sort(function(a,b) { return a.id - b.id; });
parameters.history.push({x: simplex[0].slice(),
fx: simplex[0].fx,
simplex: sortedSimplex});
}
maxDiff = 0;
for (i = 0; i < N; ++i) {
maxDiff = Math.max(maxDiff, Math.abs(simplex[0][i] - simplex[1][i]));
}
if ((Math.abs(simplex[0].fx - simplex[N].fx) < minErrorDelta) &&
(maxDiff < minTolerance)) {
break;
}
// compute the centroid of all but the worst point in the simplex
for (i = 0; i < N; ++i) {
centroid[i] = 0;
for (var j = 0; j < N; ++j) {
centroid[i] += simplex[j][i];
}
centroid[i] /= N;
}
// reflect the worst point past the centroid and compute loss at reflected
// point
var worst = simplex[N];
weightedSum(reflected, 1+rho, centroid, -rho, worst);
reflected.fx = f(reflected);
// if the reflected point is the best seen, then possibly expand
if (reflected.fx < simplex[0].fx) {
weightedSum(expanded, 1+chi, centroid, -chi, worst);
expanded.fx = f(expanded);
if (expanded.fx < reflected.fx) {
updateSimplex(expanded);
} else {
updateSimplex(reflected);
}
}
// if the reflected point is worse than the second worst, we need to
// contract
else if (reflected.fx >= simplex[N-1].fx) {
var shouldReduce = false;
if (reflected.fx > worst.fx) {
// do an inside contraction
weightedSum(contracted, 1+psi, centroid, -psi, worst);
contracted.fx = f(contracted);
if (contracted.fx < worst.fx) {
updateSimplex(contracted);
} else {
shouldReduce = true;
}
} else {
// do an outside contraction
weightedSum(contracted, 1-psi * rho, centroid, psi*rho, worst);
contracted.fx = f(contracted);
if (contracted.fx < reflected.fx) {
updateSimplex(contracted);
} else {
shouldReduce = true;
}
}
if (shouldReduce) {
// if we don't contract here, we're done
if (sigma >= 1) break;
// do a reduction
for (i = 1; i < simplex.length; ++i) {
weightedSum(simplex[i], 1 - sigma, simplex[0], sigma, simplex[i]);
simplex[i].fx = f(simplex[i]);
}
}
} else {
updateSimplex(reflected);
}
}
simplex.sort(sortOrder);
return {fx : simplex[0].fx,
x : simplex[0]};
}
/// searches along line 'pk' for a point that satifies the wolfe conditions
/// See 'Numerical Optimization' by Nocedal and Wright p59-60
/// f : objective function
/// pk : search direction
/// current: object containing current gradient/loss
/// next: output: contains next gradient/loss
/// returns a: step size taken
function wolfeLineSearch(f, pk, current, next, a, c1, c2) {
var phi0 = current.fx, phiPrime0 = dot(current.fxprime, pk),
phi = phi0, phi_old = phi0,
phiPrime = phiPrime0,
a0 = 0;
a = a || 1;
c1 = c1 || 1e-6;
c2 = c2 || 0.1;
function zoom(a_lo, a_high, phi_lo) {
for (var iteration = 0; iteration < 16; ++iteration) {
a = (a_lo + a_high)/2;
weightedSum(next.x, 1.0, current.x, a, pk);
phi = next.fx = f(next.x, next.fxprime);
phiPrime = dot(next.fxprime, pk);
if ((phi > (phi0 + c1 * a * phiPrime0)) ||
(phi >= phi_lo)) {
a_high = a;
} else {
if (Math.abs(phiPrime) <= -c2 * phiPrime0) {
return a;
}
if (phiPrime * (a_high - a_lo) >=0) {
a_high = a_lo;
}
a_lo = a;
phi_lo = phi;
}
}
return 0;
}
for (var iteration = 0; iteration < 10; ++iteration) {
weightedSum(next.x, 1.0, current.x, a, pk);
phi = next.fx = f(next.x, next.fxprime);
phiPrime = dot(next.fxprime, pk);
if ((phi > (phi0 + c1 * a * phiPrime0)) ||
(iteration && (phi >= phi_old))) {
return zoom(a0, a, phi_old);
}
if (Math.abs(phiPrime) <= -c2 * phiPrime0) {
return a;
}
if (phiPrime >= 0 ) {
return zoom(a, a0, phi);
}
phi_old = phi;
a0 = a;
a *= 2;
}
return a;
}
function conjugateGradient(f, initial, params) {
// allocate all memory up front here, keep out of the loop for perfomance
// reasons
var current = {x: initial.slice(), fx: 0, fxprime: initial.slice()},
next = {x: initial.slice(), fx: 0, fxprime: initial.slice()},
yk = initial.slice(),
pk, temp,
a = 1,
maxIterations;
params = params || {};
maxIterations = params.maxIterations || initial.length * 20;
current.fx = f(current.x, current.fxprime);
pk = current.fxprime.slice();
scale(pk, current.fxprime,-1);
for (var i = 0; i < maxIterations; ++i) {
a = wolfeLineSearch(f, pk, current, next, a);
// todo: history in wrong spot?
if (params.history) {
params.history.push({x: current.x.slice(),
fx: current.fx,
fxprime: current.fxprime.slice(),
alpha: a});
}
if (!a) {
// faiiled to find point that satifies wolfe conditions.
// reset direction for next iteration
scale(pk, current.fxprime, -1);
} else {
// update direction using PolakRibiere CG method
weightedSum(yk, 1, next.fxprime, -1, current.fxprime);
var delta_k = dot(current.fxprime, current.fxprime),
beta_k = Math.max(0, dot(yk, next.fxprime) / delta_k);
weightedSum(pk, beta_k, pk, -1, next.fxprime);
temp = current;
current = next;
next = temp;
}
if (norm2(current.fxprime) <= 1e-5) {
break;
}
}
if (params.history) {
params.history.push({x: current.x.slice(),
fx: current.fx,
fxprime: current.fxprime.slice(),
alpha: a});
}
return current;
}
function gradientDescent(f, initial, params) {
params = params || {};
var maxIterations = params.maxIterations || initial.length * 100,
learnRate = params.learnRate || 0.001,
current = {x: initial.slice(), fx: 0, fxprime: initial.slice()};
for (var i = 0; i < maxIterations; ++i) {
current.fx = f(current.x, current.fxprime);
if (params.history) {
params.history.push({x: current.x.slice(),
fx: current.fx,
fxprime: current.fxprime.slice()});
}
weightedSum(current.x, 1, current.x, -learnRate, current.fxprime);
if (norm2(current.fxprime) <= 1e-5) {
break;
}
}
return current;
}
function gradientDescentLineSearch(f, initial, params) {
params = params || {};
var current = {x: initial.slice(), fx: 0, fxprime: initial.slice()},
next = {x: initial.slice(), fx: 0, fxprime: initial.slice()},
maxIterations = params.maxIterations || initial.length * 100,
learnRate = params.learnRate || 1,
pk = initial.slice(),
c1 = params.c1 || 1e-3,
c2 = params.c2 || 0.1,
temp,
functionCalls = [];
if (params.history) {
// wrap the function call to track linesearch samples
var inner = f;
f = function(x, fxprime) {
functionCalls.push(x.slice());
return inner(x, fxprime);
};
}
current.fx = f(current.x, current.fxprime);
for (var i = 0; i < maxIterations; ++i) {
scale(pk, current.fxprime, -1);
learnRate = wolfeLineSearch(f, pk, current, next, learnRate, c1, c2);
if (params.history) {
params.history.push({x: current.x.slice(),
fx: current.fx,
fxprime: current.fxprime.slice(),
functionCalls: functionCalls,
learnRate: learnRate,
alpha: learnRate});
functionCalls = [];
}
temp = current;
current = next;
next = temp;
if ((learnRate === 0) || (norm2(current.fxprime) < 1e-5)) break;
}
return current;
}
exports.bisect = bisect;
exports.nelderMead = nelderMead;
exports.conjugateGradient = conjugateGradient;
exports.gradientDescent = gradientDescent;
exports.gradientDescentLineSearch = gradientDescentLineSearch;
exports.zeros = zeros;
exports.zerosM = zerosM;
exports.norm2 = norm2;
exports.weightedSum = weightedSum;
exports.scale = scale;
}));