NuclearDispersionSystem/ant-design-vue-jeecg/node_modules/regression/test/data.js
2023-09-14 14:47:11 +08:00

213 lines
5.5 KiB
JavaScript

export const linear = {
zeroGradient: {
r2: NaN,
equation: [0, 10],
predicted: [10, 10],
string: 'y = 0x + 10',
data: [[10, 10], [10, 10], [10, 10]],
points: [[10, 10], [10, 10], [10, 10]],
},
zeroIntercept: {
r2: 1,
equation: [2, 0],
string: 'y = 2x',
predicted: [10, 20],
data: [[0, 0], [1, 2], [2, 4], [3, 6]],
points: [[0, 0], [1, 2], [2, 4], [3, 6]],
},
positiveGradient: {
r2: 1,
equation: [2, 1],
predicted: [20, 41],
string: 'y = 2x + 1',
data: [[10, 21], [100, 201], [1000, 2001], [10000, 20001]],
points: [[10, 21], [100, 201], [1000, 2001], [10000, 20001]],
},
negativeGradient: {
r2: 1,
predicted: [3, -7],
equation: [-2, -1],
string: 'y = -2x + -1',
data: [[10, -21], [100, -201], [1000, -2001], [10000, -20001]],
points: [[10, -21], [100, -201], [1000, -2001], [10000, -20001]],
},
positiveGradientWithEmpty: {
r2: 1,
equation: [2, 1],
predicted: [20, 41],
string: 'y = 2x + 1',
data: [[10, 21], [100, null], [1000, 2001], [10000, null]],
points: [[10, 21], [100, 201], [1000, 2001], [10000, 20001]],
},
};
export const exponential = {
growthGreaterThanZero: {
r2: 1,
equation: [2, 2],
predicted: [2, 109.2],
string: 'y = 2e^(2x)',
points: [[0, 2], [0.69, 8], [1.1, 18], [1.39, 32]],
data: [[0, 2], [0.6931471806, 8], [1.098612289, 18], [1.386294361, 32]],
},
decayGreaterThanZero: {
r2: 1,
equation: [2, -2],
predicted: [2, 0.04],
string: 'y = 2e^(-2x)',
points: [[0, 2], [0.69, 0.5], [1.1, 0.22], [1.39, 0.13]],
data: [[0, 2], [0.6931471806, 0.5], [1.098612289, 0.2222222222], [1.386294361, 0.125]],
},
growthGreaterThanZeroWithEmpty: {
r2: 1,
equation: [2, 2],
predicted: [2, 109.2],
string: 'y = 2e^(2x)',
points: [[0, 2], [0.69, 8], [1.1, 18], [1.39, 32]],
data: [[0, 2], [0.6931471806, null], [1.098612289, 18], [1.386294361, null]],
},
};
export const logarithmic = {
greaterThanOne: {
r2: 1,
equation: [0, 10],
predicted: [5, 16.09],
string: 'y = 0 + 10 ln(x)',
points: [[1, 0], [2, 6.93], [3, 10.99], [4, 13.86]],
data: [[1, 0], [2, 6.931471806], [3, 10.98612289], [4, 13.86294361]],
},
greaterThanOneWithEmpty: {
r2: 1,
equation: [0, 10],
predicted: [5, 16.09],
string: 'y = 0 + 10 ln(x)',
points: [[1, 0], [2, 6.93], [3, 10.99], [4, 13.86]],
data: [[1, 0], [2, null], [3, 10.98612289], [4, null]],
},
};
export const power = {
coefficientsEqualToOne: {
r2: 1,
equation: [1, 1],
predicted: [7, 7],
string: 'y = 1x^1',
points: [[1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6]],
data: [[1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6]],
},
coefficientsEqualToOneWithEmpty: {
r2: 1,
equation: [1, 1],
predicted: [7, 7],
string: 'y = 1x^1',
points: [[1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6]],
data: [[1, 1], [2, null], [3, 3], [4, 4], [5, 5], [6, null]],
},
};
export const polynomial = {
positiveLinearGradient: {
config: { order: 1 },
r2: 1,
equation: [2, 0],
string: 'y = 2x + 0',
predicted: [4, 8],
data: [[10, 20], [100, 200], [1000, 2000], [10000, 20000]],
points: [[10, 20], [100, 200], [1000, 2000], [10000, 20000]],
},
negativeLinearGradient: {
config: { order: 1 },
r2: 1,
equation: [-2, 0],
string: 'y = -2x + 0',
predicted: [4, -8],
data: [[10, -20], [100, -200], [1000, -2000], [10000, -20000]],
points: [[10, -20], [100, -200], [1000, -2000], [10000, -20000]],
},
parabolaPositiveCoefficients: {
config: { order: 2 },
r2: 1,
equation: [1, 2, 3],
predicted: [4, 27],
string: 'y = 1x^2 + 2x + 3',
data: [[0, 3], [1, 6], [2, 11], [3, 18]],
points: [[0, 3], [1, 6], [2, 11], [3, 18]],
},
parabolaNegativeCoefficients: {
config: { order: 2 },
r2: 1,
equation: [-1, -2, -3],
predicted: [4, -27],
string: 'y = -1x^2 + -2x + -3',
data: [[0, -3], [1, -6], [2, -11], [3, -18]],
points: [[0, -3], [1, -6], [2, -11], [3, -18]],
},
cubicPositiveCoefficients: {
config: { order: 3 },
r2: 1,
equation: [2, 2, 2, 2],
predicted: [4, 170],
string: 'y = 2x^3 + 2x^2 + 2x + 2',
data: [[0, 2], [1, 8], [2, 30], [3, 80]],
points: [[0, 2], [1, 8], [2, 30], [3, 80]],
},
cubicNegativeCoefficients: {
config: { order: 3 },
r2: 1,
equation: [-2, -2, -2, -2],
predicted: [4, -170],
string: 'y = -2x^3 + -2x^2 + -2x + -2',
data: [[0, -2], [1, -8], [2, -30], [3, -80]],
points: [[0, -2], [1, -8], [2, -30], [3, -80]],
},
cubicPositiveCoefficientsWithEmpty: {
config: { order: 3 },
r2: 1,
equation: [2, 2, 2, 2],
predicted: [4, 170],
string: 'y = 2x^3 + 2x^2 + 2x + 2',
data: [[0, 2], [1, null], [2, 30], [3, 80], [4, 170], [5, 312]],
points: [[0, 2], [1, 8], [2, 30], [3, 80], [4, 170], [5, 312]],
},
zeroYValueCubic: {
r2: 1,
config: { order: 3 },
equation: [1, 2, 3, -6],
predicted: [7, 456],
string: 'y = 1x^3 + 2x^2 + 3x + -6',
data: [[1, 0], [2, 16], [3, 48], [4, 102], [5, 184], [6, 300]],
points: [[1, 0], [2, 16], [3, 48], [4, 102], [5, 184], [6, 300]],
},
zeroYCoefficientCubic: {
r2: 1,
config: { order: 3 },
equation: [0, 1, 2, 3],
predicted: [7, 66],
string: 'y = 0x^3 + 1x^2 + 2x + 3',
data: [[1, 6], [2, 11], [3, 18], [4, 27], [5, 38], [6, 51]],
points: [[1, 6], [2, 11], [3, 18], [4, 27], [5, 38], [6, 51]],
},
};