NuclearDispersionSystem/ant-design-vue-jeecg/node_modules/fmin
2023-09-14 14:47:11 +08:00
..
build 111 2023-09-14 14:47:11 +08:00
examples 111 2023-09-14 14:47:11 +08:00
node_modules/.bin 111 2023-09-14 14:47:11 +08:00
src 111 2023-09-14 14:47:11 +08:00
.eslintrc.json 111 2023-09-14 14:47:11 +08:00
.npmignore 111 2023-09-14 14:47:11 +08:00
.travis.yml 111 2023-09-14 14:47:11 +08:00
index_vis.js 111 2023-09-14 14:47:11 +08:00
index.js 111 2023-09-14 14:47:11 +08:00
LICENSE 111 2023-09-14 14:47:11 +08:00
package.json 111 2023-09-14 14:47:11 +08:00
README.md 111 2023-09-14 14:47:11 +08:00
test.py 111 2023-09-14 14:47:11 +08:00
TODO.txt 111 2023-09-14 14:47:11 +08:00

fmin Build Status

Unconstrained function minimization in javascript.

This package implements some basic numerical optimization algorithms: Nelder-Mead, Gradient Descent, Wolf Line Search and Non-Linear Conjugate Gradient methods are all provided.

Interactive visualizations with D3 explaining how these algorithms work are also included in this package. Descriptions of the algorithms as well as most of the visualizations are available on my blog post An Interactive Tutorial on Numerical Optimization.

Installing

If you use NPM, npm install fmin. Otherwise, download the latest release.

API Reference

# nelderMead(f, initial)

Uses the Nelder-Mead method to minimize a function f starting at location initial.

Example usage minimizing the function f(x, y) = x2 + y2 + x sin y + y sin x is: nelder mead demo

function loss(X) {
    var x = X[0], y = X[1];
    return Math.sin(y) * x  + Math.sin(x) * y  +  x * x +  y *y;
}

var solution = fmin.nelderMead(loss, [-3.5, 3.5]);
console.log("solution is at " + solution.x);

# conjugateGradient(f, initial)

Minimizes a function using the PolakRibière non-linear conjugate gradient method . The function f should compute both the loss and the gradient.

An example minimizing Rosenbrock's Banana function is:

conjugate gradient demo

function banana(X, fxprime) {
    fxprime = fxprime || [0, 0];
    var x = X[0], y = X[1];
    fxprime[0] = 400 * x * x * x - 400 * y * x + 2 * x - 2;
    fxprime[1] = 200 * y - 200 * x * x;
    return (1 - x) * (1 - x) + 100 * (y - x * x) * (y - x * x);
}

var solution = fmin.conjugateGradient(banana, [-1, 1]);
console.log("solution is at " + solution.x);