NuclearDispersionSystem/ant-design-vue-jeecg/node_modules/@antv/data-set/lib/transform/kde.js
2023-09-14 14:47:11 +08:00

98 lines
3.9 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
var tslib_1 = require("tslib");
/*
* kernel density estimation
*/
var util_1 = require("@antv/util");
var get_series_values_1 = tslib_1.__importDefault(require("../util/get-series-values"));
var kernel_1 = tslib_1.__importDefault(require("../util/kernel"));
var bandwidth = tslib_1.__importStar(require("../util/bandwidth"));
var partition_1 = tslib_1.__importDefault(require("../util/partition"));
var data_set_1 = require("../data-set");
var option_parser_1 = require("../util/option-parser");
var simple_statistics_1 = require("simple-statistics");
var DEFAULT_OPTIONS = {
minSize: 0.01,
as: ['key', 'y', 'size'],
// fields: [ 'y1', 'y2' ], // required, one or more fields
extent: [],
method: 'gaussian',
bandwidth: 'nrd',
step: 0,
groupBy: [],
};
var KERNEL_METHODS = util_1.keys(kernel_1.default);
var BANDWIDTH_METHODS = util_1.keys(bandwidth);
function transform(dv, options) {
options = util_1.assign({}, DEFAULT_OPTIONS, options);
var fields = option_parser_1.getFields(options);
if (!util_1.isArray(fields) || fields.length < 1) {
throw new TypeError('invalid fields: must be an array of at least 1 strings!');
}
var as = options.as;
if (!util_1.isArray(as) || as.length !== 3) {
throw new TypeError('invalid as: must be an array of 3 strings!');
}
var method = options.method;
if (util_1.isString(method)) {
if (KERNEL_METHODS.indexOf(method) === -1) {
throw new TypeError("invalid method: " + method + ". Must be one of " + KERNEL_METHODS.join(', '));
}
method = kernel_1.default[method];
}
if (!util_1.isFunction(method)) {
throw new TypeError('invalid method: kernel method must be a function!');
}
var extent = options.extent;
if (!util_1.isArray(extent) || extent.length === 0) {
var rangeArr_1 = [];
util_1.each(fields, function (field) {
var range = dv.range(field);
rangeArr_1 = rangeArr_1.concat(range);
});
extent = [Math.min.apply(Math, tslib_1.__spread(rangeArr_1)), Math.max.apply(Math, tslib_1.__spread(rangeArr_1))];
}
var bw = options.bandwidth;
if (util_1.isString(bw) && bandwidth[bw]) {
bw = bandwidth[bw](dv.getColumn(fields[0]));
}
else if (util_1.isFunction(bw)) {
bw = bw(dv.getColumn(fields[0]));
}
else if (!util_1.isNumber(bw) || bw <= 0) {
bw = bandwidth.nrd(dv.getColumn(fields[0]));
}
var seriesValues = get_series_values_1.default(extent, options.step ? options.step : bw);
var result = [];
var groupBy = options.groupBy;
var groups = partition_1.default(dv.rows, groupBy);
util_1.forIn(groups, function (group) {
var probalityDensityFunctionByField = {};
util_1.each(fields, function (field) {
var row = util_1.pick(group[0], groupBy);
probalityDensityFunctionByField[field] = simple_statistics_1.kernelDensityEstimation(group.map(function (item) { return item[field]; }), method, bw);
var _a = tslib_1.__read(as, 3), key = _a[0], y = _a[1], size = _a[2];
row[key] = field;
row[y] = [];
row[size] = [];
util_1.each(seriesValues, function (yValue) {
var sizeValue = probalityDensityFunctionByField[field](yValue);
if (sizeValue >= options.minSize) {
row[y].push(yValue);
row[size].push(sizeValue);
}
});
result.push(row);
});
});
dv.rows = result;
}
data_set_1.DataSet.registerTransform('kernel-density-estimation', transform);
data_set_1.DataSet.registerTransform('kde', transform);
data_set_1.DataSet.registerTransform('KDE', transform);
exports.default = {
KERNEL_METHODS: KERNEL_METHODS,
BANDWIDTH_METHODS: BANDWIDTH_METHODS,
};