# fmin [![Build Status](https://travis-ci.org/benfred/fmin.svg?branch=master)](https://travis-ci.org/benfred/fmin) Unconstrained function minimization in javascript. This package implements some basic numerical optimization algorithms: Nelder-Mead, Gradient Descent, Wolf Line Search and Non-Linear Conjugate Gradient methods are all provided. Interactive visualizations with D3 explaining how these algorithms work are also included in this package. Descriptions of the algorithms as well as most of the visualizations are available on my blog post [An Interactive Tutorial on Numerical Optimization](http://www.benfrederickson.com/numerical-optimization/). ## Installing If you use NPM, `npm install fmin`. Otherwise, download the [latest release](https://github.com/benfred/fmin/releases/latest). ## API Reference # nelderMead(f, initial) Uses the [Nelder-Mead method](https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method) to minimize a function f starting at location initial. Example usage minimizing the function f(x, y) = x2 + y2 + x sin y + y sin x is: ![nelder mead demo](./images/nelder_mead.gif) ```js function loss(X) { var x = X[0], y = X[1]; return Math.sin(y) * x + Math.sin(x) * y + x * x + y *y; } var solution = fmin.nelderMead(loss, [-3.5, 3.5]); console.log("solution is at " + solution.x); ``` # conjugateGradient(f, initial) Minimizes a function using the [Polak–Ribière non-linear conjugate gradient method ](https://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient_method). The function f should compute both the loss and the gradient. An example minimizing [Rosenbrock's Banana function](https://en.wikipedia.org/wiki/Rosenbrock_function) is: ![conjugate gradient demo](./images/conjugate_gradient.gif) ```js function banana(X, fxprime) { fxprime = fxprime || [0, 0]; var x = X[0], y = X[1]; fxprime[0] = 400 * x * x * x - 400 * y * x + 2 * x - 2; fxprime[1] = 200 * y - 200 * x * x; return (1 - x) * (1 - x) + 100 * (y - x * x) * (y - x * x); } var solution = fmin.conjugateGradient(banana, [-1, 1]); console.log("solution is at " + solution.x); ```